A Bayesian inference approach to the inverse heat conduction problem

Abstract A Bayesian inference approach is presented for the solution of the inverse heat conduction problem. The posterior probability density function (PPDF) of the boundary heat flux is computed given temperature measurements within a conducting solid. Uncertainty in temperature measurements is modeled as stationary zero-mean white noise. The inverse solution is obtained by computing the expectation of the PPDF. The posterior state space is exploited using Markov chain Monte Carlo (MCMC) algorithms in order to obtain estimates of the statistics of the unknown heat flux. The MCMC sampling strategy enables the extension of the Bayesian inference approach to inverse problems having high-dimensional, non-standard distribution, and/or complex PPDFs. The ill-posedness (un-identifiability) of the inverse problem is cured through prior distribution modeling (Bayesian prior regularization) of the unknown heat flux. A special model of Markov random field (MRF) is adopted for prior distribution modeling of the unknown heat flux. An augmented Bayesian model is proposed for estimating the statistics of the measurement noise as well as the unknown heat flux. Two inverse heat conduction examples are presented to demonstrate the potential of the MCMC-based Bayesian approach. The simulation results indicate that MRF provides an effective prior regularization, the estimates using MCMC samples are accurate and the Bayesian approach captures very well the probability distribution of the unknown heat flux.

[1]  N. Zabaras,et al.  A functional optimization approach to an inverse magneto- convection problem , 2001 .

[2]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[3]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[4]  D. Vere-Jones Markov Chains , 1972, Nature.

[5]  Dave Higdon,et al.  A Bayesian approach to characterizing uncertainty in inverse problems using coarse and fine-scale information , 2002, IEEE Trans. Signal Process..

[6]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[7]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[8]  Jesper Møller,et al.  Spatial statistics and computational methods , 2003 .

[9]  J. Mateu,et al.  Spatial Statistics Through Applications , 2004 .

[10]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[11]  宮沢 政清,et al.  P. Bremaud 著, Markov Chains, (Gibbs fields, Monte Carlo simulation and Queues), Springer-Verlag, 1999年 , 2000 .

[12]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[13]  N. Zabaras,et al.  AN ANALYSIS OF TWO-DIMENSIONAL LINEAR INVERSE HEAT TRANSFER PROBLEMS USING AN INTEGRAL METHOD , 1988 .

[14]  O. Alifanov Inverse heat transfer problems , 1994 .

[15]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[16]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[17]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[18]  Julian Besag,et al.  Statistical Analysis of Field Experiments Using Neighbouring Plots , 1986 .

[19]  Per Christian Hansen,et al.  Solution of Ill-Posed Problems by Means of Truncated SVD , 1988 .

[20]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[21]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[22]  A. Emery Stochastic regularization for thermal problems with uncertain parameters , 2001 .

[23]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the inverse problem , 1995 .

[24]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[25]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[26]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the optimal experiment design , 2000 .

[27]  Mike West,et al.  Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media , 2002, Technometrics.

[28]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..