Experimental precipitation of cryogenic carbonate

[1]  R. Edwards,et al.  230Th ∕ U isochron dating of cryogenic cave carbonates , 2022, Geochronology.

[2]  A. Jarosch,et al.  Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps , 2021, Nature Communications.

[3]  C. Spötl,et al.  Cryogenic cave carbonate and implications for thawing permafrost at Winter Wonderland Cave, Utah, USA , 2021, Scientific Reports.

[4]  A. Jarosch,et al.  Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation , 2020, Climate of the Past.

[5]  S. Constantin,et al.  Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems , 2020 .

[6]  B. Schöne,et al.  Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3 , 2019, Chemical Geology.

[7]  M. Filippi,et al.  Cryogenic carbonates and cryogenic speleothem damage in the Za Hájovnou Cave (Javoříčko Karst, Czech Republic) , 2018, Geological Quarterly.

[8]  D. Scholz,et al.  Late Palaeolithic cave art and permafrost in the Southern Ural , 2018, Scientific Reports.

[9]  S. Constantin,et al.  Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates , 2014 .

[10]  D. DePaolo,et al.  The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite , 2014 .

[11]  O. Kadebskaya,et al.  Morphology, composition, age and origin of carbonate spherulites from caves of Western Urals , 2014, Geochemistry International.

[12]  W. Aeschbach–Hertig,et al.  Noble gas concentrations in fluid inclusions as tracer for the origin of coarse-crystalline cryogenic cave carbonates , 2014 .

[13]  P. Froelich,et al.  Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite , 2013 .

[14]  Z. Jia,et al.  The mechanism of salt migration phenomena in cooling water and its impact on ice flashover , 2013, IEEE International Conference on Solid Dielectrics.

[15]  R. Galley,et al.  pH evolution in sea ice grown at an outdoor experimental facility , 2013 .

[16]  D. DePaolo,et al.  The influence of kinetics on the oxygen isotope composition of calcium carbonate , 2013 .

[17]  D. Scholz,et al.  Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data , 2013 .

[18]  L. Vlček,et al.  Cryogenic Cave Pearls In the Periglacial Zones of Ice Caves , 2013 .

[19]  D. Scholz,et al.  Coarsely crystalline cryogenic cave carbonate - a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe , 2012 .

[20]  L. Miller,et al.  Carbonate system evolution at the Arctic Ocean surface during autumn freeze‐up , 2011 .

[21]  A. Immenhauser,et al.  Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany) , 2010 .

[22]  D. Jacob,et al.  Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study , 2010 .

[23]  Xidong Wang,et al.  Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model , 2009 .

[24]  B. Onac,et al.  Cryogenic carbonates in cave environments: A review , 2008 .

[25]  D. K. Richter,et al.  Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): Origin, unusual internal structure and stable C-O isotope composition. , 2008 .

[26]  I. Clark,et al.  Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: Implications in paleoclimatic studies , 2006 .

[27]  Takenobu Toyota,et al.  The effect of sea-ice growth on air–sea CO2 flux in a tank experiment , 2006 .

[28]  J. Urban,et al.  Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model , 2004 .

[29]  H. Chafetz,et al.  Floating Rafts of Calcite Crystals in Cave Pools, Central Texas, U.S.A.: Crystal Habit vs. Saturation State , 2004 .

[30]  H. Kennedy,et al.  Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation , 2004 .

[31]  J. García‐Ruiz,et al.  Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study , 2003 .

[32]  D. Golden,et al.  Terrestrial Aufeis Formation as a Martian Analog: Clues from Laboratory-produced C-13 Enriched Cryogenic Carbonate , 2001 .

[33]  P. Dove,et al.  The role of Mg2+ as an impurity in calcite growth. , 2000, Science.

[34]  Andrea Borsato,et al.  Calcite Fabrics, Growth Mechanisms, and Environments of Formation in Speleothems from the Italian Alps and Southwestern Ireland , 2000 .

[35]  J. Jouzel,et al.  A kinetic isotope effect during ice formation by water freezing , 2000 .

[36]  J. Tison,et al.  Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems , 1998 .

[37]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[38]  L. Fernández-Díaz,et al.  The role of magnesium in the crystallization of calcite and aragonite in a porous medium , 1996 .

[39]  G. Dieckmann,et al.  Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine , 1995 .

[40]  I. Clark,et al.  Kinetic enrichment of stable isotopes in cryogenic calcites , 1992 .

[41]  B. Hallet Deposits formed by subglacial precipitation of CaCO3 , 1976 .

[42]  Robert L. Folk,et al.  The Natural History Of Crystalline Calcium Carbonate: Effect of Magnesium Content And Salinity , 1974 .

[43]  M. Luetscher,et al.  Cryogenic Mineral Formation in Caves , 2018 .

[44]  J. López-Martínez,et al.  Characteristics of cryogenic carbonates in a Pyrenean ice cave (northern Spain) , 2015 .

[45]  David L. Parkhurst,et al.  Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 2013 .

[46]  Ch . Spötl Kryogene Karbonate im Höhleneis der Eisriesenwelt , 2008 .

[47]  G. Dieckmann,et al.  BIOGEOCHEMISTRY OF ANTARCTIC SEA ICE , 2002 .

[48]  Harro A. J. Meijer,et al.  Environmental isotopes in the hydrological cycle: principles and applications , 2001 .

[49]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .

[50]  J. Jouzel,et al.  Melting–Refreezing at the Glacier Sole and the Isotopic Composition of the Ice , 1982, Journal of Glaciology.

[51]  J. R. O'neil,et al.  HYDROGEN AND OXYGEN ISOTOPE FRACTIONATION BETWEEN ICE AND WATER. , 1968 .