Heterogeneous mixtures of elliptical particles: Directly resolving local and global properties and responses

In our earlier papers, Prosperetti's seminal Physalis method for fluid flows was extended to directly resolve electric fields in finite-sized particles and to investigate accurately the mutual fluid-particle, particle-particle, and particle-boundary interactions for circular/spherical particles. For the first time, the method makes the accurate prediction of the local charge distribution, force and torque on finite-sized particles possible. In the present work, the method is extended to heterogeneous mixtures of elliptical particles to further investigate the effects of the orientation and anisotropy. The direct resolution of the effect of fields in heterogeneous mixtures of elliptical particles to determine local and global properties and responses has many applications in engineering, mechanics, physics, chemistry, and biology. The method can be applied to heterogeneous materials, heterogeneous functional materials, microfluidics, and devices such as electric double layer capacitors. In the present paper, the accuracy of the method is extensively investigated even for very challenging problems, for example, for elongated rod-like particles with very high aspect ratios. The accuracy and efficiency of the method suggests that it can be used for many important applications of broad interest.

[1]  Z. Suo,et al.  A nonlinear field theory of deformable dielectrics , 2008 .

[2]  Charbel Farhat,et al.  Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .

[3]  R. S. Lakes,et al.  Size effects in the elasticity and viscoelasticity of bone , 2003, Biomechanics and modeling in mechanobiology.

[4]  Charbel Farhat,et al.  A higher‐order discontinuous enrichment method for the solution of high péclet advection–diffusion problems on unstructured meshes , 2010 .

[5]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[6]  Stanislaw M. Gubanski,et al.  Dielectric mixtures: electrical properties and modeling , 2001 .

[7]  Takashi Sato,et al.  Calculation of electrostatic force between two charged dielectric spheres by the re-expansion method , 1999 .

[8]  Cagatay Basdogan,et al.  Characterization of frequency-dependent material properties of human liver and its pathologies using an impact hammer , 2011, Medical Image Anal..

[9]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[10]  Andrea Prosperetti,et al.  The interaction between a solid particle and a turbulent flow , 2010 .

[11]  Sining Yu,et al.  Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities , 2007, J. Comput. Phys..

[12]  Qianlong Liu,et al.  Directly resolving particles in an electric field: local charge, force, torque, and applications , 2011 .

[13]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[14]  Domina Eberle Spencer,et al.  Field Theory for Engineers , 1964 .

[15]  G. Iaccarino,et al.  Immersed boundary technique for turbulent flow simulations , 2003 .

[16]  Andrea Prosperetti,et al.  A second-order method for three-dimensional particle simulation , 2005 .

[17]  Kazufumi Ito,et al.  Three-dimensional elliptic solvers for interface problems and applications , 2003 .

[18]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[19]  Paul G. Huray The Foundations of Signal Integrity , 2009 .

[20]  James P. Keener,et al.  An Immersed Interface Method for Solving Anisotropic Elliptic Boundary Value Problems in Three Dimensions , 2003, SIAM J. Sci. Comput..

[21]  Zhilin Li,et al.  The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..

[22]  Charbel Farhat,et al.  A discontinuous enrichment method for variable‐coefficient advection–diffusion at high Péclet number , 2011 .

[23]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[24]  N. Mortensen,et al.  The dielectrophoretic force on dielectric spherical objects , 2006 .

[25]  Soheil Mohammadi,et al.  Extended Finite Element Method: for Fracture Analysis of Structures , 2008 .

[26]  Qianlong Liu,et al.  A stable and accurate projection method on a locally refined staggered mesh , 2011 .

[27]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[28]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[29]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[30]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[31]  A. Majumdar,et al.  Gate capacitance of cylindrical nanowires with elliptical cross-sections , 2011 .

[32]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[33]  R. Sharma,et al.  A comprehensive trapped charge profiling technique for SONOS flash EEPROMs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[34]  Andrea Prosperetti,et al.  PHYSALIS: a new method for particle simulation part II: two-dimensional Navier--Stokes flow around cylinders , 2003 .

[35]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[36]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .

[37]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[38]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[39]  R. W. Sillars The properties of a dielectric containing semiconducting particles of various shapes , 1937 .

[40]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[41]  Kenneth Reifsnider,et al.  Damage Tolerance and Durability of Material Systems , 2002 .

[42]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[43]  R. K. Wangsness Electromagnetic fields , 1979 .

[44]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[45]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[46]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[47]  C. Farhat,et al.  The discontinuous enrichment method for elastic wave propagation in the medium‐frequency regime , 2006 .

[48]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[49]  Andrea Prosperetti,et al.  Pressure-driven flow in a two-dimensional channel with porous walls , 2009, Journal of Fluid Mechanics.

[50]  B. Sumpter,et al.  Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors , 2010 .

[51]  Ted Belytschko,et al.  Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative , 2007, J. Comput. Phys..

[52]  A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces , 2006 .

[53]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[54]  Y. L. Chen,et al.  Electrostatic particle-particle interactions in electrorheological fluids , 1991 .

[55]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[56]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[57]  Stanley Osher,et al.  A Hybrid Method for Moving Interface Problems with Application to the Hele-Shaw Flow , 1997 .

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  Prasun Majumdar,et al.  Material state changes as a basis for prognosis in aeronautical structures , 2009 .

[60]  F. Rabbi,et al.  Heterofoam: New Concepts and Tools for Heterogeneous Functional Material Design , 2012 .

[61]  Charbel Farhat,et al.  The discontinuous enrichment method for multiscale analysis , 2003 .

[62]  Andrea Prosperetti,et al.  Pressure-driven flow in a channel with porous walls* , 2010, Journal of Fluid Mechanics.

[63]  Eftychios Sifakis,et al.  ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .

[64]  Paul D. Fazzino,et al.  Electrochemical Impedance Spectroscopy Detection of Damage in Out of Plane Fatigued Fiber Reinforced Composite Materials , 2008 .

[65]  Soheil Mohammadi,et al.  Delamination analysis of composites by new orthotropic bimaterial extended finite element method , 2011 .

[66]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[67]  M. Nafría,et al.  Analysis of the evolution of the trapped charge distributions in 10nm SiO2 films during DC and bipolar dynamic stress , 1997 .

[68]  B. Hinderliter,et al.  Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods , 2006 .

[69]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[70]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[71]  Andrea Prosperetti,et al.  Wall effects on a rotating sphere , 2010, Journal of Fluid Mechanics.

[72]  I. Babuska,et al.  GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .

[73]  A. Prosperetti,et al.  Physalis: a new o(N) method for the numerical simulation of disperse systems: potential flow of spheres , 2001 .

[74]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[75]  C. Farhat,et al.  A discontinuous enrichment method for three‐dimensional multiscale harmonic wave propagation problems in multi‐fluid and fluid–solid media , 2008 .

[76]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[77]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[78]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[79]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[80]  Michael Oevermann,et al.  A sharp interface finite volume method for elliptic equations on Cartesian grids , 2009, J. Comput. Phys..

[81]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[82]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[83]  Kenneth Reifsnider,et al.  Impedance spectroscopy for progressive damage analysis in woven composites , 2009 .

[84]  Qianlong Liu Physalis method for heterogeneous mixtures of dielectrics and conductors: Accurately simulating one million particles using a PC , 2011, J. Comput. Phys..

[85]  Phillip Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[86]  R. Lakes Size effects and micromechanics of a porous solid , 1983 .

[87]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[88]  Patrick Roblin,et al.  High-Speed Heterostructure Devices , 2002 .

[89]  J. Scully,et al.  Transition from Localized Corrosion to Stress Corrosion Cracking in an Al-Li-Cu-Ag Alloy , 2005 .

[90]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[91]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .