Protein Function Microarrays: Design, Use and Bioinformatic Analysis in Cancer Biomarker Discovery and Quantitation

Protein microarrays have many potential applications in the systematic, quantitative analysis of protein function, including in biomarker discovery applications. In this chapter, we review available methodologies relevant to this field and describe a simple approach to the design and fabrication of cancer-antigen arrays suitable for cancer biomarker discovery through serological analysis of cancer patients. We consider general issues that arise in antigen content generation, microarray fabrication and microarray-based assays and provide practical examples of experimental approaches that address these. We then focus on general issues that arise in raw data extraction, raw data preprocessing and analysis of the resultant preprocessed data to determine its biological significance, and we describe computational approaches to address these that enable quantitative assessment of serological protein microarray data. We exemplify this overall approach by reference to the creation of a multiplexed cancer-antigen microarray that contains 100 unique, purified, immobilised antigens in a spatially defined array, and we describe specific methods for serological assay and data analysis on such microarrays, including test cases with data originated from a malignant melanoma cohort.

[1]  H. Lehrach,et al.  Recent advances of protein microarrays , 2005, Current Opinion in Chemical Biology.

[2]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[3]  Alicia Oshlack,et al.  Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes , 2007, Genome Biology.

[4]  Manju Bansal,et al.  A novel method for prokaryotic promoter prediction based on DNA stability , 2005, BMC Bioinformatics.

[5]  Vladimir Brusic,et al.  Proteome informatics for cancer research: From molecules to clinic , 2007, Proteomics.

[6]  E. Tan,et al.  Tumor-associated Antigen Arrays for the Serological Diagnosis of Cancer* , 2006, Molecular & Cellular Proteomics.

[7]  Gavin MacBeath,et al.  Dissecting protein function and signaling using protein microarrays. , 2009, Current opinion in chemical biology.

[8]  Paul C. Boutros,et al.  Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data , 2005, Briefings Bioinform..

[9]  J. Licinio Welcome to The Pharmacogenomics Journal , 2001, The Pharmacogenomics Journal.

[10]  L. Truedsson,et al.  Design of recombinant antibody microarrays for serum protein profiling: targeting of complement proteins. , 2007, Journal of proteome research.

[11]  Barry Schweitzer,et al.  Microarrays to characterize protein interactions on a whole‐proteome scale , 2003, Proteomics.

[12]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[13]  J. M. Boutell,et al.  Functional protein microarrays for parallel characterisation of p53 mutants , 2004, Proteomics.

[14]  Martin Vingron,et al.  Normalization and quantification of differential expression in gene expression microarrays , 2006, Briefings Bioinform..

[15]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[16]  Jean-Michel Safari Serufuri Development of computational methods for custom protein arrays analysis : a case study on a 100-protein ("CT100") cancer/testis antigen array , 2010 .

[17]  L. Guarente,et al.  Open reading frame cloning: identification, cloning, and expression of open reading frame DNA. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Gerstein,et al.  Global Analysis of Protein Activities Using Proteome Chips , 2001, Science.

[19]  A. Chapman-Smith,et al.  The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. , 1999, Trends in biochemical sciences.

[20]  Dale L. Wilson,et al.  New Normalization Methods for CDNA Microarray Data , 2003, Bioinform..

[21]  Naomi Altman,et al.  Replication, Variation and Normalisation in Microarray Experiments , 2005, Applied bioinformatics.

[22]  Marta Sanchez-Carbayo,et al.  Antibody arrays: technical considerations and clinical applications in cancer. , 2006, Clinical chemistry.

[23]  Luc J. Smink,et al.  Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease , 2003, Nature.

[24]  J. Claverie Viruses take center stage in cellular evolution , 2006, Genome Biology.

[25]  J. Camarero,et al.  Protein Microarrays: Novel Developments and Applications , 2010, Pharmaceutical Research.

[26]  Manuel Fuentes,et al.  New technologies in cancer. Protein microarrays for biomarker discovery , 2011, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.

[27]  M. Gerstein,et al.  Analysis of yeast protein kinases using protein chips , 2000, Nature Genetics.

[28]  Günther Deuschl,et al.  Can Zipf's law be adapted to normalize microarrays? , 2005, BMC Bioinformatics.

[29]  M. Snyder,et al.  Protein microarray technology , 2006, Mechanisms of Ageing and Development.

[30]  G. Hardiman Microarray technologies 2003 -- an overview. , 2003, Pharmacogenomics.

[31]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[32]  Michael Schäferling,et al.  Optical technologies for the read out and quality control of DNA and protein microarrays , 2006, Analytical and bioanalytical chemistry.

[33]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[34]  P. Babbitt,et al.  Homologous (β/α)8-Barrel enzymes that catalyze unrelated reactions: Orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase , 2002 .

[35]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[36]  R. Hargreaves,et al.  Clinical biomarkers in drug discovery and development , 2003, Nature Reviews Drug Discovery.

[37]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .

[38]  J. Sambrook,et al.  hnologies/genomic-dna/repli-g-mini-kit#productdetails 76. . Molecular Cloning: Manual 3rd Ed. , 2001 .

[39]  Virginia Espina,et al.  Protein microarrays: Molecular profiling technologies for clinical specimens , 2003, Proteomics.

[40]  J. Klein,et al.  Overview of proteomics. , 2004, Contributions to nephrology.

[41]  H. Lehrach,et al.  Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. , 2003, Journal of chromatography. A.

[42]  J. Blackburn,et al.  High affinity capture surface for matrix-assisted laser desorption/ionisation compatible protein microarrays. , 2003, Rapid communications in mass spectrometry : RCM.

[43]  P. Tucker,et al.  Construction of recombinant DNA by exonuclease recession. , 1993, Nucleic acids research.

[44]  Steven A Carr,et al.  Protein biomarker discovery and validation: the long and uncertain path to clinical utility , 2006, Nature Biotechnology.

[45]  Lesley Jones,et al.  Microarray Gene Expression Data Analysis: A Beginners Guide , 2004, Human Genetics.

[46]  I. Jones,et al.  Improving baculovirus recombination. , 2003, Nucleic acids research.

[47]  Yao-Tseng Chen,et al.  Cancer/testis antigens: an expanding family of targets for cancer immunotherapy , 2002, Immunological reviews.

[48]  Mark Gerstein,et al.  ProCAT: a data analysis approach for protein microarrays , 2006, Genome Biology.

[49]  M. Snyder,et al.  Analyzing antibody specificity with whole proteome microarrays , 2003, Nature Biotechnology.

[50]  W. Hendrickson,et al.  Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. , 1995, Structure.

[51]  Jonathan M Blackburn,et al.  Protein function microarrays for customised systems-oriented proteome analysis. , 2011, Methods in molecular biology.

[52]  Svante Pääbo,et al.  Sequential DEXAS: a method for obtaining DNA sequences from genomic DNA and blood in one reaction. , 2003, Nucleic acids research.

[53]  T. Kodadek Protein microarrays: prospects and problems. , 2001, Chemistry & biology.

[54]  H. Lehrach,et al.  Protein Array Technology , 2001, American journal of pharmacogenomics : genomics-related research in drug development and clinical practice.

[55]  Gary Hardiman Microarray Technologies – An Overview , 2002 .

[56]  Tao Han,et al.  Microarray scanner calibration curves: characteristics and implications , 2005, BMC Bioinformatics.

[57]  Bhupinder Bhullar,et al.  Self-Assembling Protein Microarrays , 2004, Science.

[58]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[59]  Sorin Drăghici,et al.  Data Analysis Tools for DNA Microarrays , 2003 .

[60]  Joshua LaBaer,et al.  The sentinel within: exploiting the immune system for cancer biomarkers. , 2005, Journal of proteome research.

[61]  Jason W. Osborne,et al.  Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. , 2005 .

[62]  L. Rueda,et al.  Spot Detection and Image Segmentation in DNA Microarray Data , 2005, Applied bioinformatics.

[63]  P. Predki Functional protein microarrays: ripe for discovery. , 2004, Current opinion in chemical biology.

[64]  Patricia C. Babbitt,et al.  Evolutionary Potential of (β/α)8-Barrels: Functional Promiscuity Produced by Single Substitutions in the Enolase Superfamily† , 2003 .

[65]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[66]  Lance D. Miller,et al.  Correlation test to assess low-level processing of high-density oligonucleotide microarray data , 2005, BMC Bioinformatics.

[67]  Gavin MacBeath,et al.  Protein microarrays and proteomics , 2002, Nature Genetics.

[68]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[69]  W. Robinson,et al.  Antigen arrays for antibody profiling. , 2006, Current opinion in chemical biology.

[70]  M. Taussig,et al.  Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). , 2001, Nucleic acids research.