WHEN AND HOW n CHOOSE k

We discuss different ways of generating k-subsets of an n-set, as well as of permutations, matrices and flags over the finite field Fq . Connections with the Markov Chain approach and Bruhat decomposition are established. The black box groups approach is defined. No previous knowledge of the subject is assumed.

[1]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[2]  Fan Chung Graham,et al.  Random walks on generating sets for finite groups , 1996, Electron. J. Comb..

[3]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  László Babai,et al.  Local expansion of vertex-transitive graphs and random generation in finite groups , 1991, STOC '91.

[6]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[7]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[8]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[9]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[10]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Cheryl E. Praeger,et al.  A Recognition Algorithm for Special Linear Groups , 1992 .

[12]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[13]  Richard P. Stanley,et al.  Some combinatorial aspects of the Schubert calculus , 1977 .

[14]  László Babai,et al.  Fast Monte Carlo algorithms for permutation groups , 1991, STOC '91.

[15]  T. C. Hu,et al.  Combinatorial algorithms , 1982 .

[16]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[17]  David Gluck,et al.  Characters and Random Walks on Finite Classical Groups , 1997 .

[18]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[19]  P. Diaconis Group representations in probability and statistics , 1988 .

[20]  Ivan Cherednik,et al.  A new interpretation of Gelfand-Tzetlin bases , 1987 .

[21]  P. Matthews A strong uniform time for random transpositions , 1988 .

[22]  Maxim Nazarov,et al.  Young's Symmetrizers for Projective Representations of the Symmetric Group☆ , 1997 .

[23]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[24]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[25]  Michel Demazure,et al.  Désingularisation des variétés de Schubert généralisées , 1974 .

[26]  P. Diaconis,et al.  Strong uniform times and finite random walks , 1987 .

[27]  橋爪 道彦,et al.  Random Walks on Distance-Regular Graphs , 1990 .

[28]  Andrew Simon Greenhalgh,et al.  Random walks on groups with subgroup invariance properties , 1989 .

[29]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[30]  Steve Linton,et al.  Constructive recognition of a black box group isomorphic to GL(n,2) , 1995, Groups and Computation.

[31]  László Babai,et al.  Randomization in group algorithms: Conceptual questions , 1995, Groups and Computation.

[32]  P. Diaconis,et al.  The Subgroup Algorithm for Generating Uniform Random Variables , 1987, Probability in the Engineering and Informational Sciences.

[33]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[34]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[35]  M. Wodzicki Lecture Notes in Math , 1984 .

[36]  M. Hildebrand Generating Random Elements in SLn (Fq) by Random Transvections , 1992 .

[37]  A. D'Aristotile,et al.  The nearest neighbor random walk on subspaces of a vector space and rate of convergence , 1995 .

[38]  A. Odlyzko,et al.  Random Shuffles and Group Representations , 1985 .

[39]  Gene Cooperman,et al.  Combinatorial Tools for Computational Group Theory , 1991, Groups And Computation.

[40]  D. White,et al.  Constructive combinatorics , 1986 .

[41]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[42]  Charles R. Leedham-Green,et al.  Calculating the order of an invertible matrix , 1995, Groups and Computation.

[43]  Herbert S. Wilf,et al.  On the Sequential and Random Selection of Subspaces over a Finite Field , 1977, J. Comb. Theory, Ser. A.

[44]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .

[45]  P. Diaconis,et al.  Comparison Techniques for Random Walk on Finite Groups , 1993 .

[46]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[47]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[48]  Cheryl E. Praeger,et al.  Cyclic Matrices Over Finite Fields , 1995 .

[49]  T. A. Springer,et al.  Seminar on Algebraic Groups and Related Finite Groups , 1970 .