Nonlinear excitations and electric transport in dissipative Morse-Toda lattices

Abstract. We investigate the onset and maintenance of nonlinear soliton-like excitations in chains of atoms with Morse interactions at rather high densities, where the exponential repulsion dominates. First we discuss the atomic interactions and approximate the Morse potential by an effective Toda potential with adapted density-dependent parameters. Then we study several mechanisms to generate and stabilize the soliton-like excitations: (i) External forcing: we shake the masses periodically, mimicking a piezoelectric-like excitation, and delay subsequent damping by thermal excitation; (ii) heating, quenching and active friction: we heat up the system to a relatively high temperature Gaussian distribution, then quench to a low temperature, and subsequently stabilize by active friction. Finally, we assume that the atoms in the chain are ionized with free electrons able to move along the lattice. We show that the nonlinear soliton-like excitations running on the chain interact with the electrons. They influence their motion in the presence of an external field creating dynamic bound states (“solectrons”, etc.). We show that these bound states can move very fast and create extra current. The soliton-induced contribution to the current is constant, field-independent for a significant range of values when approaching the zero-field value.

[1]  Morikazu Toda,et al.  The classical specific heat of the exponential lattice , 1983 .

[2]  D. Hennig,et al.  Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers , 2003, Journal of biological physics.

[3]  Philippe Choquard,et al.  The anharmonic crystal , 1967 .

[4]  Werner Ebeling,et al.  Thermodynamics and transport in an active Morse ring chain , 2001 .

[5]  V. A. Makarov,et al.  Dissipative Toda-Rayleigh lattice and its oscillatory modes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Volker Heine,et al.  The Pseudopotential Concept , 1970 .

[7]  Vladimir I. Nekorkin,et al.  Synergetic phenomena in active lattices : patterns, waves, solitons, chaos , 2002 .

[8]  Werner Ebeling,et al.  Distribution functions and excitation spectra of Toda systems at intermediate temperatures , 2000 .

[9]  Velarde,et al.  Localized finite-amplitude disturbances and selection of solitary waves , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  M. Ross,et al.  Repulsive forces of simple molecules and mixtures at high density and temperature , 1980 .

[11]  Hennig Solitonic energy transfer in a coupled exciton-vibron system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Werner Ebeling,et al.  Soliton-like Waves on dissipative Toda Lattices , 2000, Int. J. Bifurc. Chaos.

[13]  J. W. Edington,et al.  Four-layer defects in quenched aluminium , 1967 .

[14]  V. A. Makarov,et al.  Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Werner Ebeling,et al.  Nonlinear Ionic Excitations, Dynamic Bound States, and Nonlinear Currents in a One‐dimensional Plasma , 2005 .

[16]  Vladimir I. Nekorkin,et al.  Synergetic Phenomena in Active Lattices , 2002 .

[17]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[18]  B. M. Smirnov,et al.  Properties of a bound ensemble of repelling atoms , 2005 .

[19]  W. Ebeling,et al.  Bifurcations of a semiclassical atom in a periodic field. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Büttner,et al.  Solitons on the Toda Lattice: Thermodynamical and Quantum-mechanical Aspects , 1986 .

[21]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[22]  F. Schweitzer,et al.  Brownian particles far from equilibrium , 2000 .

[23]  Alwyn C. Scott,et al.  Davydov’s Soliton , 1992 .

[24]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[25]  Jörn Dunkel,et al.  Phase behavior and collective excitations of the Morse ring chain , 2003 .

[26]  D. Hennig,et al.  Nonlinear charge transport mechanism in periodic and disordered DNA , 2003, nlin/0301039.

[27]  Werner Ebeling,et al.  Coherent Motions and Clusters in a dissipative Morse Ring Chain , 2002, Int. J. Bifurc. Chaos.

[28]  Savin,et al.  Charge transport by solitons in hydrogen-bonded materials. , 1991, Physical review letters.

[29]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[30]  Morikazu Toda,et al.  Nonlinear waves and solitons , 1989 .

[31]  C. Christov,et al.  Dissipative solitons , 1995 .

[32]  N. P. Kovalenko,et al.  Transport properties of dense plasmas , 1984 .

[33]  David Pines,et al.  The Many-body Problem , 1971 .

[34]  Werner Ebeling,et al.  Thermodynamics and phase transitions in dissipative and active Morse chains , 2005 .

[35]  Rayleigh Lord,et al.  XXXIII. On maintained vibrations , 1883 .

[36]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[37]  福山 秀敏 J. Bernasconi and T. Schneider編: Physics in One Dimension; Proceedings of an International Conference, Fribourg, 1980, Springer-Verlag, Berlin and New York, 1981, ix+368ページ, 23.5×16cm, DM 65 (Springer Series in Solid-State Sciences, 23). , 1982 .

[38]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.