Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties

An atomic integral-direct implementation of molecular linear-response properties and excited-state one-electron properties is presented for the coupled cluster models CCS, CC2, and CCSD. Sample calculations are presented for the polarizability of N2 and for excited-state one-electron properties and transition-properties of furan.

[1]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[2]  J. Gauss,et al.  Nuclear magnetic shielding constants in the CC2 model , 1997 .

[3]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[4]  P. Jørgensen,et al.  Integral direct calculation of CC2 excitation energies: singlet excited states of benzene , 1996 .

[5]  B. A. Hess,et al.  TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients of the triplebonded molecules CO, N2, CN−, and NO+ , 1996 .

[6]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[7]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[8]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[9]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[10]  K. Hirao,et al.  Theoretical study of the excitation spectra of five‐membered ring compounds: Cyclopentadiene, furan, and pyrrole , 1996 .

[11]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[12]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[13]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[14]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[15]  J. Gauss,et al.  Analytic energy derivatives for the equation-of-motion coupled-cluster method: Algebraic expressions, implementation and application to theS1 state of HFCO , 1995 .

[16]  D. Mukherjee,et al.  Coupled-Cluster Based Linear Response Approach to Property Calculations: Dynamic Polarizability and Its Static Limit , 1995 .

[17]  M. Guest,et al.  The electronic states of furan studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction calculations , 1995 .

[18]  Trygve Helgaker,et al.  A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model , 1994 .

[19]  H. Koch,et al.  Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function , 1994 .

[20]  Henrik Koch,et al.  Calculation of frequency-dependent polarizabilities using coupled-cluster response theory , 1994 .

[21]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[22]  P. Wormer,et al.  Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr , 1993 .

[23]  M. Fülscher,et al.  Theoretical study of the electronic spectra of cyclopentadiene, pyrrole, and furan , 1993 .

[24]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[25]  D. M. Bishop,et al.  Molecular vibrational and rotational motion in static and dynamic electric fields , 1990 .

[26]  J. Olsen,et al.  Accurate calculations of the dynamic dipole polarizability of N2. A multiconfigurational linear response study using restricted active space (RAS) wavefunctions , 1989 .

[27]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[28]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[29]  A. Thakkar,et al.  Multipole moments, polarizabilities, and hyperpolarizabilities for N2 from fourth‐order many‐body perturbation theory calculations , 1988 .

[30]  H. Nakatsuji,et al.  Cluster expansion of the wave function. Valence and Rydberg excitations and ionizations of pyrrole, furan, and cyclopentadiene , 1985 .

[31]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[32]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[33]  E. Davidson Comments on the Kalamboukis tests of the Davidson algorithm , 1980 .

[34]  W. Butscher,et al.  Configuration interaction study of the electronic spectrum of furan , 1980 .

[35]  G. Sørensen,et al.  Microwave spectra of deuterated furans. Revised molecular structure of furan , 1978 .

[36]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[37]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[38]  Edson R. Peck,et al.  Dispersion of Nitrogen , 1966 .

[39]  P. Wilkinson Refractive Dispersion of Nitrogen in the Vacuum Ultraviolet , 1960 .

[40]  W. WashburnE.,et al.  International Critical Tables , 1927 .

[41]  Peter R. Taylor,et al.  Accurate Calculations and Calibration , 1992 .