The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution

During microRNA (miRNA) biogenesis, one strand of a ∼21–22-nucleotide RNA duplex is preferentially selected for entry into a silencing complex. The other strand, known as the miRNA* species, has typically been assumed to be a carrier strand. Here we show that, although Drosophila melanogaster miRNA* species are less abundant than their partners, they are often present at physiologically relevant levels and can associate with Argonaute proteins. Comparative genomic analyses revealed that >40% of miRNA* sequences resist nucleotide divergence across Drosophilid evolution, and at least half of these well-conserved miRNA* species select for conserved 3′ untranslated region seed matches well above background noise. Finally, we validated the inhibitory activity of miRNA* species in both cultured cells and transgenic animals. These data broaden the reach of the miRNA regulatory network and suggest an important mechanism that diversifies miRNA function during evolution.

[1]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[2]  C. Goodman,et al.  The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. , 1995, Genes & development.

[3]  Eugene Berezikov,et al.  Cloning and expression of new microRNAs from zebrafish , 2006, Nucleic acids research.

[4]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[5]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[6]  W. Bender,et al.  MicroRNAs in the Drosophila bithorax complex. , 2008, Genes & development.

[7]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[8]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[9]  Manolis Kellis,et al.  Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. , 2007, Genome research.

[10]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[11]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[12]  B. Biehs,et al.  brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila , 2004, Development.

[13]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[14]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[15]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[16]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[17]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[18]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[19]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[20]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[21]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[22]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[23]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[24]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[25]  Anastasia Khvorova,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[26]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[27]  Hu Fu,et al.  Identifications of conserved 7-mers in 3'-UTRs and microRNAs in Drosophila , 2007, BMC Bioinformatics.

[28]  G. Rubin,et al.  neuralized functions cell-autonomously to regulate a subset of notch-dependent processes during adult Drosophila development. , 2001, Developmental biology.

[29]  Eric C Lai,et al.  The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. , 2005, Genes & development.

[30]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[31]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[32]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[33]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[34]  Eugene Berezikov,et al.  Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. , 2008, Genes & development.

[35]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[36]  Norbert Perrimon,et al.  Functional screening identifies miR-315 as a potent activator of Wingless signaling , 2007, Proceedings of the National Academy of Sciences.

[37]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[38]  Hans Lassmann,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005 .

[39]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[40]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[41]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[42]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[43]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[44]  Gerald M Rubin,et al.  Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. , 2004, RNA.

[45]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[46]  Uwe Ohler,et al.  Spatial preferences of microRNA targets in 3' untranslated regions , 2007, BMC Genomics.

[47]  Manolis Kellis,et al.  A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. , 2008, Genes & development.

[48]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[49]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[50]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.