Hypersonic and supersonic flow roadmaps using bibliometrics and database tomography

Database Tomography (DT) is a textual database analysis system consisting of two major components: 1) Algorithms for extracting multiword phrase frequencies and phrase proximities (physical closeness of the multiword technical phrases) from any type of large textual database, to augment 2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a hypersonic/supersonic flow (HSF) database derived from the Science Citation Index and the Engineering Compendex. Phrase frequency analysis by the technical domain expert provided the pervasive technical themes of the HSF database, and the phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the HSF literature supplemented the DT results with author/journal/institution publication and citation data. Comparisons of HSF results with past analyses of similarly structured near‐earth space and Chemistry databases are made. One important finding is that many of the normalized bibliometric distribution functions are extremely consistent across these diverse technical domains.

[1]  Ronald N. Kostoff,et al.  Database tomography for information retrieval , 1997, J. Inf. Sci..

[2]  Daryl E. Chubin,et al.  Research Impact Assessment , 1993 .

[3]  Ronald N. Kostoff Research Impact Quantification , 1994 .

[4]  Ronald N. Kostoff,et al.  Database tomography for technical intelligence , 1993 .

[5]  F. Narin,et al.  The transfer of public science to patented technology: A case study in agricultural science , 1997 .

[6]  M. Callon,et al.  From translations to problematic networks: An introduction to co-word analysis , 1983 .

[7]  Louis M. Gomez,et al.  All the Right Words: Finding What You Want as a Function of Richness of Indexing Vocabulary. , 1990 .

[8]  Harry Rothman,et al.  An experiment in science mapping for research planning , 1986 .

[9]  H. Edmund Stiles,et al.  The Association Factor in Information Retrieval , 1961, JACM.

[10]  Robert J.W. Tijssen,et al.  Mapping Changes in Science and Technology , 1994 .

[11]  Derek Barker,et al.  Technology foresight using roadmaps , 1995 .

[12]  Kui-Lam Kwok,et al.  A network approach to probabilistic information retrieval , 1995, TOIS.

[13]  Miles A. Libbey,et al.  THE ROLE AND DISTRIBUTION OF WRITTEN INFORMAL COMMUNICATION IN THEORETICAL HIGH ENERGY PHYSICS. , 1967 .

[14]  F. Lootsma Stochastic and Fuzzy Pert , 1989 .

[15]  Carolyn J. Crouch,et al.  An approach to the automatic construction of global thesauri , 1990, Inf. Process. Manag..

[16]  Albert Sydney Hornby,et al.  Idiomatic and syntactic English dictionary , 1942 .

[17]  M. Callon,et al.  Mapping the Dynamics of Science and Technology , 1986 .

[18]  Marcia J. Bates,et al.  Subject access in online catalogs: A design model , 1986 .

[19]  Ronald N. Kostoff,et al.  Database Tomography for Technical Intelligence: A Roadmap of the Near-Earth Space Science and Technology Literature , 1998, Inf. Process. Manag..

[20]  Lauren B. Doyle,et al.  Indexing and abstracting by association , 1962 .

[21]  Ronald N. Kostoff,et al.  Modeling technology roadmaps , 1997 .

[22]  Ronald N. Kostoff,et al.  Science and technology innovation , 1999 .

[23]  Bajis M. Dodin,et al.  Approximating the Criticality Indices of the Activities in PERT Networks , 1985 .

[24]  Michael Lesk,et al.  Word-word associations in document retrieval systems , 1969 .

[25]  W. Bruce Croft,et al.  TREC and Tipster Experiments with Inquery , 1995, Inf. Process. Manag..

[26]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[27]  Ronald N. Kostoff,et al.  Database tomography: Origins and duplications , 1994 .

[28]  D. Swanson Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge , 2015, Perspectives in biology and medicine.

[29]  W. Bruce Croft,et al.  An Association Thesaurus for Information Retrieval , 1994, RIAO.

[30]  S. Bauin Aquaculture: A Field by Bureaucratic Fiat , 1986 .

[31]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[32]  Gerard Salton,et al.  Improving Retrieval Performance by Relevance Feedback , 1997 .

[33]  Amanda Spink,et al.  Term Relevance Feedback and Mediated Database Searching: Implications for Information Retrieval Practice and Systems Design , 1995, Inf. Process. Manag..

[34]  Hossein Arsham,et al.  Managing project activity-duration uncertainties , 1993 .

[35]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[36]  Aviezri S. Fraenkel,et al.  Local Feedback in Full-Text Retrieval Systems , 1977, JACM.

[37]  W. Bruce Croft,et al.  Using Probabilistic Models of Document Retrieval without Relevance Information , 1979, J. Documentation.