Lever aggregation operators

We make use of the physical concept of lever to generalize well-known operators based on weights. All these operators can be understood as levers in equilibrium, with weights (masses) located at the points in [0,1] that opinions represent.

[1]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[2]  L. Losonczi Equality of two variable weighted means: reduction to differential equations , 1999 .

[3]  Jean-Luc Marichal,et al.  On Choquet and Sugeno integrals as aggregation functions , 2000 .

[4]  Radko Mesiar Fuzzy set approach to the utility, preference relations, and aggregation operators , 2007, Eur. J. Oper. Res..

[5]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[6]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[7]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[8]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Z. Páles Characterization of quasideviation means , 1982 .

[11]  Ronald R. Yager,et al.  Balance Operator: A new vision on Aggregation Operators , 1999 .

[12]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[13]  G. Choquet Theory of capacities , 1954 .

[14]  Vicenç Torra,et al.  On aggregation operators for ordinal qualitative information , 2000, IEEE Trans. Fuzzy Syst..

[15]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .

[16]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[18]  M. Komorníková Aggregation operators and additive generators , 2001 .

[19]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[20]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[21]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[22]  Zsolt Páles On the convergence of means , 1991 .

[23]  Ronald R. Yager Weighted triangular norms using generating functions , 2004 .

[24]  Ronald R. Yager,et al.  Fusion of ordinal information using weighted median aggregation , 1998, Int. J. Approx. Reason..

[25]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[26]  Radko Mesiar,et al.  Weighted means and weighting functions , 2006, Kybernetika.

[27]  Bernadette Bouchon-Meunier,et al.  Building an Aggregation Operator with a Balance , 2000 .

[28]  Radko Mesiar,et al.  Weighted aggregation operators based on minimization , 2008, Inf. Sci..

[29]  Rita Almeida Ribeiro,et al.  Aggregation with generalized mixture operators using weighting functions , 2003, Fuzzy Sets Syst..

[30]  R. Mesiar Choquet-like Integrals , 1995 .

[31]  P. Bullen Handbook of means and their inequalities , 1987 .

[32]  Radko Mesiar,et al.  Quantitative weights and aggregation , 2004, IEEE Transactions on Fuzzy Systems.

[33]  J. Aczél On weighted synthesis of judgements , 1984 .

[34]  W. Pedrycz,et al.  Generalized means as model of compensative connectives , 1984 .

[35]  R. Cooper On the existence of periodic solutions in general two-dimensional differential systems , 1972 .