Improving the Blue Response and Efficiency of Multicrystalline Silicon Solar Cells by Surface Nanotexturing

Reducing surface reflectance by surface roughening is critical to improve the efficiency of all kinds of solar cells. In this letter, nanotexturing based on reactive ion etching (RIE) was adopted to increase the blue response and conversion efficiency of multicrystalline silicon (mc-Si) solar cells. After antireflection film deposition, the reflectivity at 400 nm remarkably decreases from 27.76% for acid-textured wafer to 4.46% for RIE-textured wafer. The average conversion efficiency of industrial wafer-scale (15.6 cm × 15.6 cm) mc-Si solar cells increased from 18.10% to 18.72%. This letter presents an effective strategy to improve the efficiency of industrial mc-Si solar cells.

[1]  A. Rohatgi,et al.  Rie-texturing of multicrystalline silicon solar cells , 2002 .

[2]  M. Lipiński,et al.  Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells , 2005 .

[3]  H. Hauser,et al.  Honeycomb Structure on Multi-crystalline Silicon Al-BSF Solar Cell With 17.8% Efficiency , 2015, IEEE Journal of Photovoltaics.

[4]  M. Shen,et al.  18.45%‐Efficient Multi‐Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo‐Pyramid Texture , 2014 .

[5]  Thomas Käsebier,et al.  Black Silicon Photovoltaics , 2012, Photonics Europe.

[6]  D. Flood,et al.  Fabrication and characteristics of black silicon for solar cell applications: An overview , 2014 .

[7]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[8]  A. Blakers,et al.  Characterization of MAE-Textured Nanoporous Silicon for Solar Cells Application: Optics and Surface Passivation , 2014, IEEE Journal of Photovoltaics.

[9]  Y. Xin,et al.  Plasma-etching fabrication and properties of black silicon by using sputtered silver nanoparticles as micromasks , 2012 .

[10]  Kyoung-hee Lee,et al.  Damage-free reactive ion etch for high-efficiency large-area multi-crystalline silicon solar cells , 2011 .

[11]  Peter Sutter,et al.  Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells , 2015, Nature Communications.

[12]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[13]  Chung-Wen Lan,et al.  Development of high‐performance multicrystalline silicon for photovoltaic industry , 2015 .

[14]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[15]  R. Turan,et al.  Performance of nanowire decorated mono- and multi-crystalline Si solarcells , 2013 .

[16]  Jan Benick,et al.  High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide , 2010, IEEE Electron Device Letters.

[17]  J. Teng,et al.  Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing , 2014, Light: Science & Applications.

[18]  M. Schubert,et al.  Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition , 2013, IEEE Journal of Photovoltaics.

[19]  G. Cody,et al.  Optical reflectance and transmission of a textured surface , 1977 .

[20]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[21]  S. Narasimha,et al.  Fabrication and analysis of record high 18.2% efficient solar cells on multicrystalline silicon material , 1996, IEEE Electron Device Letters.

[22]  M. Stutzmann,et al.  Black thin film silicon , 2011 .