Effects of correlated input and electrical coupling on synchrony in fast-spiking cell networks

Fast-spiking (FS) cells in layer IV of the somatosensory cortex receive direct thalamocortical (TC) input and provide feed-forward inhibition onto layer IV excitatory cells. The level of synchronous firing of FS cells will affect the shape of this feed-forward output. Two factors that contribute to the synchrony are correlated TC input and electrical coupling between FS cells. Using a cell-pair model, we show that these two factors act synergistically to increase synchrony, and we examine the underlying mechanism.

[1]  N Kopell,et al.  Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks , 2001, The Journal of Neuroscience.

[2]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[4]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[5]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[6]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[7]  D. Simons,et al.  Circuit dynamics and coding strategies in rodent somatosensory cortex. , 2000, Journal of neurophysiology.

[8]  H. Swadlow,et al.  Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. , 1995, Journal of neurophysiology.

[9]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[10]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[11]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[12]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[13]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[14]  H. Swadlow,et al.  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[15]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.