Multivariate Extension of Raftery Copula

This paper introduces a multivariate extension of Raftery copula. The proposed copula is exchangeable and expressed in terms of order statistics. Several properties of this copula are established. In particular, the multivariate Kendall’s tau and Spearman’s rho, as well as the density function, of the suggested copula are derived. The lower and upper tail dependence of the proposed copula are also established. The dependence parameter estimator of this new copula is examined based on the maximum likelihood procedure. A simulation study shows a satisfactory performance of the presented estimator. Finally, the proposed copula is successfully applied to a real data set on black cherry trees.

[1]  M. Omladič,et al.  Extreme generators of shock induced copulas , 2022, Appl. Math. Comput..

[2]  C. Genest,et al.  A new bivariate Poisson common shock model covering all possible degrees of dependence , 2018, Statistics & Probability Letters.

[3]  Debasis Kundu,et al.  Absolute continuous bivariate generalized exponential distribution , 2011 .

[4]  Giuliana Regoli,et al.  A class of bivariate exponential distributions , 2009, J. Multivar. Anal..

[5]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[6]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[7]  David J. Hand,et al.  A Handbook of Small Data Sets , 1993 .

[8]  Harry Joe,et al.  Multivariate concordance , 1990 .

[9]  B. Arnold,et al.  Bivariate Distributions with Exponential Conditionals , 1988 .

[10]  G. A. Mack,et al.  Order Statistics (2nd Ed.) , 1983 .

[11]  Henry W. Block,et al.  A Continuous, Bivariate Exponential Extension , 1974 .

[12]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[13]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[14]  A. Paulson A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION AND A BIVARIATE EXPONENTIAL DISTRIBUTION , 2016 .

[15]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[16]  Umberto Cherubini,et al.  Copulas in Finance , 2011, International Encyclopedia of Statistical Science.

[17]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[18]  R. Nelsen Concordance and Copulas: A Survey , 2002 .

[19]  Asit P. Basu,et al.  23 Multivariate exponential distributions and their applications in reliability , 1988 .

[20]  Adrian E. Raftery,et al.  A continuous multivariate exponential distribution , 1984 .