A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band

We report on the design, fabrication, and characterization of an 840-900-GHz frequency multiplier chain that delivers more than 1 mW across the band at room temperature with a record peak power of 1.4 mW at 875 GHz. When cooled to 120 K, the chain delivers up to 2 mW at 882 GHz. The chain consists of a power amplifier module that drives two cascaded frequency triplers. This unprecedented output power from an electronic source is achieved by utilizing in-phase power-combining techniques. The first stage tripler uses four power-combined chips while the last stage tripler utilizes two power-combined chips. The source output was analyzed with a Fourrer transform spectrometer to verify signal purity.

[1]  W. Deal,et al.  Submillimeter-Wave InP MMIC Amplifiers From 300–345 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[2]  Dwight L. Woolard,et al.  Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.

[3]  Frank Schwierz,et al.  An electron mobility model for wurtzite GaN , 2005 .

[4]  Choonsup Lee,et al.  In-Phase Power-Combined Frequency Triplers at 300 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[5]  I. Mehdi,et al.  Local oscillator chain for 1.55 to 1.75THz with 100-/spl mu/W peak power , 2005, IEEE Microwave and Wireless Components Letters.

[6]  Jesus Grajal,et al.  Capabilities of GaN Schottky Multipliers for LO Power Generation at Millimeter-Wave Bands , 2008 .

[7]  I. Mehdi,et al.  A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multipliers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[8]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[9]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[10]  I. Mehdi,et al.  An all-solid-state broad-band frequency multiplier chain at 1500 GHz , 2004, IEEE Transactions on Microwave Theory and Techniques.

[11]  H.B. Wallace,et al.  Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.

[12]  G. Chattopadhyay,et al.  Broadband sources in the 1–3 THz range , 2009, 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves.

[13]  P. Siegel,et al.  Terahertz imaging , 2005, IMS 2005.

[14]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[15]  D. Zimdars,et al.  Terahertz Imaging , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[16]  I. Mehdi,et al.  A 1.7-1.9 THz local oscillator source , 2004, IEEE Microwave and Wireless Components Letters.

[17]  G. Siebes,et al.  The Upper Atmosphere Research Satellite microwave limb sounder instrument , 1993 .

[18]  I. Mehdi,et al.  A 540-640-GHz high-efficiency four-anode frequency tripler , 2005, IEEE Transactions on Microwave Theory and Techniques.

[19]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[20]  Antti V. Räisänen,et al.  Cooled Schottky varactor frequency multipliers at submillimeter wavelengths , 1993 .

[21]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[22]  Choonsup Lee,et al.  A Broadband 835–900-GHz Fundamental Balanced Mixer Based on Monolithic GaAs Membrane Schottky Diodes , 2010, IEEE Transactions on Microwave Theory and Techniques.

[23]  D.W. Porterfield,et al.  High-Efficiency Terahertz Frequency Triplers , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[24]  P. Siegel Terahertz Technology , 2001 .

[25]  N. R. Erickson,et al.  Analysis of a 170-GHz frequency doubler with an array of planar diodes , 1995 .

[26]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[27]  Thomas W. Crowe,et al.  Progress toward solid-state local oscillators at 1 THz , 1996 .

[28]  Hiroshi Ito,et al.  Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes , 2005 .

[29]  R Kunkel,et al.  Continuous wave terahertz systems exploiting 1.5 microm telecom technologies. , 2009, Optics express.

[30]  P. Siegel Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).