Ultra-Lithium-deficient Halo Stars and Blue Stragglers: A Common Origin?

We present data for four ultra-Li-deficient, warm, halo stars. The Li deficiency of two of these is a new discovery. Three of the four stars have effective temperatures Teff ~ 6300 K, in contrast to previously known Li-deficient halo stars, which spanned the temperature range of the Spite plateau. In this paper we propose that these and previously known ultra-Li-deficient halo stars may have had their surface lithium abundances reduced by the same mechanism as produces halo field blue stragglers. Even though these stars have yet to reveal themselves as blue stragglers, they might be regarded as "blue-stragglers-to-be." In our proposed scenario, the surface abundance of Li in these stars could be destroyed (1) during the normal pre-main-sequence single-star evolution of their low-mass precursors, (2) during the post-main-sequence evolution of an evolved mass donor, and/or (3) via mixing during a mass-transfer event or stellar merger. The warmest Li-deficient stars at the turnoff would be regarded as emerging "canonical" blue stragglers, whereas cooler ones represent sub-turnoff-mass blue-stragglers-to-be. The latter are presently hidden on the main sequence, Li depletion being possibly the clearest signature of their past history and future significance. Eventually, the main-sequence turnoff will reach down to their mass, exposing those Li-depleted stars as canonical blue stragglers when normal stars of that mass evolve away. Arguing against this unified view is the observation that the three Li-depleted stars at Teff ≃ 6300 K are all binaries, whereas very few of the cooler systems show evidence for binarity; it is thus possible that two separate mechanisms are responsible for the production of Li-deficient main-sequence halo stars.

[1]  G. Preston,et al.  What Are These Blue Metal-Poor Stars? , 2000 .

[2]  S. Ryan The host stars of extrasolar planets have normal lithium abundances , 2000, astro-ph/0007057.

[3]  T. Beers,et al.  Extremely Metal-poor Stars. VII. The Most Metal-poor Dwarf, CS 22876–032 , 2000, astro-ph/0004350.

[4]  H. W. Zhang,et al.  Chemical composition of 90 F and G disk dwarfs , 1999, astro-ph/9912342.

[5]  G. Preston,et al.  Pulsating Blue Metal-poor Stars , 1999 .

[6]  R. Jeffries On the lithium abundance dispersion in late-type Pleiades stars , 1999, astro-ph/9906189.

[7]  R. Rood,et al.  Blue Straggler Stars: The Spectacular Population in M80 , 1999, astro-ph/9904196.

[8]  T. Beers,et al.  The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.

[9]  T. Beers,et al.  Extremely Metal Poor Stars. VI. The Heterogeneous Class of Lithium-depleted Main-Sequence Turnoff Dwarfs , 1998 .

[10]  J. Richer,et al.  Consistent Evolution of F Stars: Diffusion, Radiative Accelerations, and Abundance Anomalies , 1998 .

[11]  M. Pinsonneault,et al.  110 Herculis: A Possible Prototype for Simultaneous Lithium and Beryllium Depletion, and Implications for Stellar Interiors , 1997 .

[12]  T. Beers,et al.  Extremely Metal-poor Stars. IV. The Carbon-rich Objects , 1997 .

[13]  T. Beers,et al.  Extremely Metal-Poor Stars. The Carbon-Rich, Neutron Capture Element-Poor Object CS 22957–027 , 1997 .

[14]  T. Beers,et al.  Extremely Metal-Poor Stars. III. The Lithium-depleted Main-Sequence Turnoff Dwarfs , 1997 .

[15]  S. Shapiro,et al.  Evolution of Stellar Collision Products in Globular Clusters. I. Head-on Collisions , 1997, astro-ph/9705019.

[16]  S. Jha,et al.  A Planet Orbiting the Star ρ Coronae Borealis , 1997, astro-ph/9704248.

[17]  P. Bonifacio,et al.  The primordial lithium abundance , 1996, astro-ph/9611043.

[18]  L. Hernquist,et al.  Composition Mixing during Blue Straggler Formation and Evolution , 1996, astro-ph/9609172.

[19]  T. Beers,et al.  Lithium Processing in Halo Dwarfs, and T eff, [Fe/H] Correlations on the Spite Plateau , 1996 .

[20]  C. Bailyn,et al.  Are Blue Stragglers Mixed during Collisions? , 1995 .

[21]  S. Shapiro,et al.  Collisions of main-sequence stars and the formation of blue stragglers in globular clusters , 1995, astro-ph/9511074.

[22]  S. Ryan,et al.  Lithium in Short-Period Tidally Locked Binaries: A Test of Rotationally Induced Mixing , 1995 .

[23]  M. Livio,et al.  The Rotational Rates of Blue Stragglers Produced by Physical Stellar Collisions , 1995 .

[24]  S. Ryan,et al.  Lithium in a short-period tidally locked binary of M67: Implications for stellar evolution, Galactic Lithium evolution, and cosmology , 1994 .

[25]  M. Pinsonneault,et al.  Stellar models with microscopic diffusion and rotational mixing 2.: Application to open clusters , 1994, astro-ph/9408059.

[26]  J. B. Laird,et al.  A survey of proper motion stars. 12: an expanded sample , 1994 .

[27]  M. Pinsonneault,et al.  Evidence for a dispersion in the lithium abundances of extreme halo stars , 1993 .

[28]  T. Beers,et al.  New lithium observations of two (Fe/H) = -3.5 or less dwarfs , 1993 .

[29]  J. Thorburn Two new lithium-deficient population II dwarfs , 1992 .

[30]  Don A. VandenBerg,et al.  Oxygen-enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions , 1992 .

[31]  J. E. Heath,et al.  Lithium abundances for 81 F dwarfs , 1991 .

[32]  D. Welty,et al.  An Extreme Population II Dwarf without Lithium , 1991 .

[33]  R. Mathieu,et al.  OBSERVED UPPER LIMITS ON LITHIUM ABUNDANCES IN BLUE STRAGGLERS , 1991 .

[34]  C. Pritchet,et al.  The lithium abundance of M67 blue stragglers : a constraint on the blue straggler phenomenon , 1991 .

[35]  C. Proffitt,et al.  Diffusion and mixing of lithium and helium in population II dwarfs , 1991 .

[36]  M. Mateo,et al.  Blue stragglers as remnants of stellar mergers - The discovery of short-period eclipsing binaries in the globular cluster NGC 5466 , 1990 .

[37]  G. Steigman,et al.  Main-sequence mass loss and the lithium dip , 1990 .

[38]  S. Kawaler,et al.  Lithium in halo stars from standard stellar evolution , 1990 .

[39]  P. Leonard Stellar Collisions in Globular Clusters and the Blue Straggler Problem , 1989 .

[40]  C. Pilachowski,et al.  Lithium in old open clusters: NGC 188 , 1988 .

[41]  J. B. Laird,et al.  A Survey of Proper-Motion Stars. III. Reddenings, Distances, and Metallicities , 1988 .

[42]  A. Boesgaard,et al.  Lithium in the Hyades Cluster , 1986 .

[43]  F. Walter,et al.  Stellar activity in synchronized binaries. I - Dependence on rotation , 1985 .

[44]  B. Carney,et al.  Field population II blue stragglers , 1981 .

[45]  R. Webbink The evolution of low-mass close binary systems. I. The evolutionary fate of contact binaries , 1975 .

[46]  A. Sandage The color-magnitude diagram for the globular cluster M 3. , 1953 .

[47]  D. Vanbeveren The influence of binaries on stellar population studies , 2001 .

[48]  T. Beers,et al.  Lithium Depletion in a [Fe/H]= —3.4 star? , 2000 .

[49]  A. Noels The galactic halo : from globular clusters to field stars : proceedings of the 35th Liège International Astrophysical Colloquium, July 5-8, 1999 , 2000 .

[50]  Arlette Noels-Grötsch,et al.  The Galactic halo. From globular clusters to field stars. Proceedings. , 2000 .

[51]  D. Soderblom,et al.  The Evolution of the Lithium Abundances of Solar-Type Stars. VIII. M67 (NGC 2682) , 1999 .

[52]  de Freitas Pacheco Light element abundances , 1996 .

[53]  B. Fields ON THE EVOLUTION OF THE LIGHT ELEMENTS , 1995 .

[54]  C. Deliyannis Using Beryllium to Explore Stellar Structure and Evolution , 1995 .

[55]  J. Thorburn The Primordial lithium abundance from extreme subdwarfs: New observations , 1993 .

[56]  P. Demarque,et al.  The revised Yale isochrones and luminosity functions : containing both the theoretical and photometric UBVRI quantities with HR diagrams and luminosity function plots , 1987 .