Video Retrieval System for Bridging the Semantic Gap

We propose a video ontology system to overcome semantic gap in video retrieval. The proposed video ontology is aimed at bridging of the gap between the semantic nature of user queries and raw video contents. Also, results of semantic retrieval shows not only the concept of topic keyword but also a sub-concept of the topic keyword using semantic query extension. Through this process, recall is likely to provide high accuracy results in our method. The experiments compared with keyframe-based indexing have demonstrated that this proposed scene-based indexing presents better results in several kinds of videos.