Facets of Synthesis: Revisiting Church's Problem

In this essay we discuss the origin, central results, and some perspectives of algorithmic synthesis of nonterminating reactive programs. We recall the fundamental questions raised more than 50 years ago in "Church's Synthesis Problem" that led to the foundation of the algorithmic theory of infinite games. We outline the methodology developed in more recent years for solving such games and address related automata theoretic problems that are still unresolved.

[1]  Lukasz Kaiser,et al.  Model Checking Games for the Quantitative μ-Calculus , 2008, Theory of Computing Systems.

[2]  Boris A. Trakhtenbrot,et al.  Finite automata : behavior and synthesis , 1973 .

[3]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[4]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[5]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[6]  Hilary Putnam,et al.  Decidability and essential undecidability , 1957, Journal of Symbolic Logic.

[7]  M. Rabin Automata on Infinite Objects and Church's Problem , 1972 .

[8]  David Gale,et al.  13. Infinite Games with Perfect Information , 1953 .

[9]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[10]  Erich Grädel Banach-Mazur Games on Graphs , 2008, FSTTCS.

[11]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[12]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[13]  Lukasz Kaiser,et al.  Model Checking Games for the Quantitative mu-Calculus , 2008, STACS.

[14]  Lawrence H. Landweber,et al.  Finite Delay Solutions for Sequential Conditions , 1972, ICALP.

[15]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[16]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[17]  Andrzej Wlodzimierz Mostowski,et al.  Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.

[18]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[19]  A. Kechris Classical descriptive set theory , 1987 .

[20]  Wolfgang Thomas,et al.  Solution of Church ’ s Problem : A Tutorial , 2007 .

[21]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[22]  Krzysztof R. Apt,et al.  New Perspectives on Games and Interaction , 2008 .

[23]  Alexander Moshe Rabinovich,et al.  Logical Refinements of Church's Problem , 2007, CSL.

[24]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[25]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[26]  Alonzo Church,et al.  Logic, arithmetic, and automata , 1962 .

[27]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[28]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[29]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[30]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.