On nonbinary quantum convolutional BCH codes

Several new families of nonbinary quantum convolutional Bose-Chaudhuri-Hocquenghem (BCH) codes are constructed in this paper. These code constructions are performed algebraically and not by computation search. The quantum convolutional codes constructed here have parameters better than the ones available in the literature and they have noncatastrophic encoders and encoder inverses. These new families consist of unit-memory as well as multi-memory convolutional stabilizer codes.

[1]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[2]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[3]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[4]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[5]  Mark M. Wilde,et al.  Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.

[6]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[7]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[8]  M. Hamada Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction , 2008, IEEE Transactions on Information Theory.

[9]  Kjell Jørgen Hole On classes of convolutional codes that are not asymptotically catastrophic , 2000, IEEE Trans. Inf. Theory.

[10]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[11]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[12]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[13]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[14]  Heide Gluesing-Luerssen,et al.  A matrix ring description for cyclic convolutional codes , 2008, Adv. Math. Commun..

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[17]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[18]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[19]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[20]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[21]  G. L. Guardia Constructions of new families of nonbinary quantum codes , 2009 .

[22]  Mark M. Wilde,et al.  Minimal-Memory, Noncatastrophic, Polynomial-Depth Quantum Convolutional Encoders , 2011, IEEE Transactions on Information Theory.

[23]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[24]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[25]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[26]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[27]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[28]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes , 2007, ArXiv.

[29]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[30]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[31]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[32]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[33]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[34]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[35]  Martin Rötteler,et al.  Constructions of Quantum Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[36]  Reginaldo Palazzo Júnior,et al.  A concatenated [(4, 1, 3)] quantum convolutional code , 2004, Information Theory Workshop.