Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach

The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendier in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[3]  W. Rudin Real and complex analysis , 1968 .

[4]  A. Kechris Classical descriptive set theory , 1987 .

[5]  Kenneth Kunen,et al.  Handbook of Set-Theoretic Topology , 1988 .

[6]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[7]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[8]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[9]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[10]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[11]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[12]  Robert M. Keller,et al.  Formal verification of parallel programs , 1976, CACM.

[13]  Roberto Gorrieri,et al.  Extended Markovian Process Algebra , 1996, CONCUR.

[14]  Albert Benveniste,et al.  A Calculus of Stochastic Systems for the Specification, Simulation, and Hidden State Estimation of Mixed Stochastic/Nonstochastic Systems , 1994, Theor. Comput. Sci..

[15]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[16]  John C. Reynolds,et al.  Algebraic Methods in Semantics , 1985 .

[17]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[18]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[19]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[20]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[21]  Michael Barr,et al.  Additions and Corrections to "Terminal Coalgebras in Well-founded Set Theory" , 1994, Theor. Comput. Sci..

[22]  Hans-Jörg Schek,et al.  Object Orientation with Parallelism and Persistence , 1996 .

[23]  M. Bonsangue,et al.  Topological Dualities in Semantics , 1996 .

[24]  Frank Harary,et al.  Graph Theory , 2016 .

[25]  Michèle Giry,et al.  A categorical approach to probability theory , 1982 .

[26]  C. Baier,et al.  Domain equations for probabilistic processes , 2000, Mathematical Structures in Computer Science.

[27]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[28]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[29]  Bart Jacobs,et al.  Objects and Classes, Co-Algebraically , 1995, Object Orientation with Parallelism and Persistence.

[30]  Thomas A. Henzinger,et al.  Hybrid Automata with Finite Bisimulatioins , 1995, ICALP.

[31]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[32]  Marta Z. Kwiatkowska,et al.  Probabilistic Metric Semantics for a Simple Language with Recursion , 1996, MFCS.

[33]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[34]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1989, J. Comput. Syst. Sci..

[35]  Abbas Edalat,et al.  A logical characterization of bisimulation for labeled Markov processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[36]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[37]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[38]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[39]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[40]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[41]  José Meseguer,et al.  Initiality, induction, and computability , 1986 .