The height of watermelons with wall

We derive asymptotics for the moments as well as the weak limit of the height distribution of watermelons with p branches with wall. This generalizes a famous result of de Bruijn et al (1972 Graph Theory and Computing (New York: Academic) pp 15–22) on the average height of planted plane trees, and results by Fulmek (2007 Electron. J. Combin. 14 R64) and Katori et al (2008 J. Stat. Phys. 131 1067–83) on the expected value and higher moments, respectively, of the height distribution of watermelons with two branches. The asymptotics for the moments depend on the analytic behaviour of certain multidimensional Dirichlet series. In order to obtain this information, we prove a reciprocity relation satisfied by the derivatives of one of Jacobi’s theta functions, which generalizes the well-known reciprocity law for Jacobi’s theta functions.

[1]  Karl Liechty THE LIMITING DISTRIBUTION OF THE MAXIMAL HEIGHT OF THE OUTERMOST PATH OF NONINTERSECTING BROWNIAN EXCURSIONS AND DISCRETE GAUSSIAN ORTHOGONAL POLYNOMIALS , 2011 .

[2]  P. Forrester,et al.  Non-intersecting Brownian walkers and Yang–Mills theory on the sphere , 2010, 1009.2362.

[3]  M. Katori,et al.  Maximum distributions of bridges of noncolliding Brownian paths. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  S. Majumdar,et al.  Exact distribution of the maximal height of p vicious walkers. , 2008, Physical review letters.

[5]  S. Majumdar,et al.  Exact distribution of the maximal height of watermelons , 2008 .

[6]  Thomas Feierl,et al.  The height and range of watermelons without wall , 2008, Eur. J. Comb..

[7]  M. Katori,et al.  Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function , 2007, 0711.1710.

[8]  Marc de Crisenoy Values at $T$-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables , 2006 .

[9]  Craig A. Tracy,et al.  Nonintersecting Brownian Excursions , 2006, math/0607321.

[10]  Markus Fulmek Asymptotics of the Average Height of 2-Watermelons with a Wall , 2006, Electron. J. Comb..

[11]  C. Krattenthaler Watermelon configurations with wall interaction: exact and asymptotic results , 2005, math/0506323.

[12]  Nicolas Bonichon,et al.  Watermelon uniform random generation with applications , 2003, Theor. Comput. Sci..

[13]  F. Gillet Asymptotic behaviour of watermelons , 2003, math/0307204.

[14]  S. Majumdar,et al.  Anisotropic ballistic deposition model with links to the Ulam problem and the Tracy-Widom distribution. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Wilf,et al.  Longest Increasing Subsequences in Pattern-Restricted Permutations , 2003, Electron. J. Comb..

[16]  M. Katori,et al.  Functional central limit theorems for vicious walkers , 2002, math/0203286.

[17]  J. W. Essam,et al.  Scaling Analysis for the Adsorption Transition in a Watermelon Network of n Directed Non-Intersecting Walks , 2001 .

[18]  C. Krattenthaler,et al.  Vicious walkers, friendly walkers and Young tableaux: II. With a wall , 2000, cond-mat/0006367.

[19]  J. Pitman,et al.  Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions , 1999, math/9912170.

[20]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 1999, Physical review letters.

[21]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[22]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[23]  Anthony J. Guttmann,et al.  Vicious walkers and Young tableaux I: without walls , 1998 .

[24]  T. Seppäläinen A MICROSCOPIC MODEL FOR THE BURGERS EQUATION AND LONGEST INCREASING SUBSEQUENCES , 1996 .

[25]  Essam,et al.  Vicious walkers and directed polymer networks in general dimensions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  P. Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[27]  P. Diaconis,et al.  Hammersley's interacting particle process and longest increasing subsequences , 1995 .

[28]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[29]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[30]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[31]  Par Pierrette Cassou-Nogues PROLONGEMENT DE CERTAINES SERIES DE DIRICHLET , 1983 .

[32]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[33]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[34]  A. Rényi,et al.  On the height of trees , 1967, Journal of the Australian Mathematical Society.

[35]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[36]  D. Essouabri,et al.  Relations between values at T -tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables. , 2008 .

[37]  Thomas Feierl The height of watermelons with wall Extended , 2007 .

[38]  Ekkenhard Krätzel,et al.  Analytische Funktionen in der Zahlentheorie , 2000 .

[39]  I. Gessel,et al.  Random walk in a Weyl chamber , 1992 .

[40]  Ira M. Gessel,et al.  Determinants, Paths, and Plane Partitions , 1989 .

[41]  Gopal Mohanty Lattice path counting and applications , 1979 .

[42]  de Ng Dick Bruijn,et al.  THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .

[43]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.