Unbiased Markov chain Monte Carlo for intractable target distributions

Performing numerical integration when the integrand itself cannot be evaluated point-wise is a challenging task that arises in statistical analysis, notably in Bayesian inference for models with intractable likelihood functions. Markov chain Monte Carlo (MCMC) algorithms have been proposed for this setting, such as the pseudo-marginal method for latent variable models and the exchange algorithm for a class of undirected graphical models. As with any MCMC algorithm, the resulting estimators are justified asymptotically in the limit of the number of iterations, but exhibit a bias for any fixed number of iterations due to the Markov chains starting outside of stationarity. This "burn-in" bias is known to complicate the use of parallel processors for MCMC computations. We show how to use coupling techniques to generate unbiased estimators in finite time, building on recent advances for generic MCMC algorithms. We establish the theoretical validity of some of these procedures by extending existing results to cover the case of polynomially ergodic Markov chains. The efficiency of the proposed estimators is compared with that of standard MCMC estimators, with theoretical arguments and numerical experiments including state space models and Ising models.

[1]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[2]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[3]  A. Eberle,et al.  Coupling and convergence for Hamiltonian Monte Carlo , 2018, The Annals of Applied Probability.

[4]  G. Roberts,et al.  Polynomial convergence rates of Markov chains. , 2002 .

[5]  Gersende Fort,et al.  Quantitative Convergence Rates for Subgeometric Markov Chains , 2013, J. Appl. Probab..

[6]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[7]  V. Johnson A Coupling-Regeneration Scheme for Diagnosing Convergence in Markov Chain Monte Carlo Algorithms , 1998 .

[8]  Arnaud Doucet,et al.  Large-sample asymptotics of the pseudo-marginal method , 2018, Biometrika.

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  A. Doucet,et al.  Controlled sequential Monte Carlo , 2017, The Annals of Statistics.

[11]  Simona Temereanca,et al.  Rapid Changes in Thalamic Firing Synchrony during Repetitive Whisker Stimulation , 2008, The Journal of Neuroscience.

[12]  Sally Rosenthal,et al.  Parallel computing and Monte Carlo algorithms , 1999 .

[13]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[14]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[15]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[16]  Arnaud Doucet,et al.  Unbiased Smoothing using Particle Independent Metropolis-Hastings , 2019, AISTATS.

[17]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[18]  L. Lin,et al.  A noisy Monte Carlo algorithm , 1999, hep-lat/9905033.

[19]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[20]  Fredrik Lindsten,et al.  Smoothing With Couplings of Conditional Particle Filters , 2017, Journal of the American Statistical Association.

[21]  Philip Heidelberger,et al.  Bias Properties of Budget Constrained Simulations , 1990, Oper. Res..

[22]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[23]  J. Heng,et al.  Unbiased Hamiltonian Monte Carlo with couplings , 2017, Biometrika.

[24]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[25]  C. Fox,et al.  Coupled MCMC with a randomized acceptance probability , 2012, 1205.6857.

[26]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[27]  V. Johnson Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .

[28]  Ward Whitt,et al.  The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..

[29]  A. Doucet,et al.  A lognormal central limit theorem for particle approximations of normalizing constants , 2013, 1307.0181.

[30]  A. Doucet,et al.  The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[31]  Zoubin Ghahramani,et al.  MCMC for Doubly-intractable Distributions , 2006, UAI.

[32]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[33]  Radford M. Neal Circularly-Coupled Markov Chain Sampling , 2017, 1711.04399.

[34]  Matti Vihola,et al.  Coupled conditional backward sampling particle filter , 2018, The Annals of Statistics.

[35]  R. Douc,et al.  Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.

[36]  Jaewoo Park,et al.  Bayesian Inference in the Presence of Intractable Normalizing Functions , 2017, Journal of the American Statistical Association.

[37]  John O'Leary,et al.  Unbiased Markov chain Monte Carlo with couplings , 2017, 1708.03625.

[38]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[39]  Peter W. Glynn,et al.  Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.

[40]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[41]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[42]  Florian Heiss,et al.  Discrete Choice Methods with Simulation , 2016 .

[43]  Robert Kohn,et al.  Block-Wise Pseudo-Marginal Metropolis-Hastings , 2016 .

[44]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[45]  Mario Ullrich Efficient Exact Sampling for the Ising Model at all Temperatures , 2010, 1012.3944.

[46]  Noa Malem-Shinitski,et al.  Estimating a Separably Markov Random Field from Binary Observations , 2018, Neural Computation.

[47]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[48]  Christophe Andrieu,et al.  On the utility of Metropolis-Hastings with asymmetric acceptance ratio , 2018, 1803.09527.