Asymmetric excitation of surface plasmons by dark mode coupling

Asymmetric excitation of surface plasmons is achieved by classical dark mode coupling, promising metadevices with unique functionalities. Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

[1]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[2]  Maxim Durach,et al.  Nanoconcentration of terahertz radiation in plasmonic waveguides. , 2008, Optics express.

[3]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[4]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[5]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[6]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[7]  J. Marangos Electromagnetically induced transparency , 1998 .

[8]  Willie J Padilla,et al.  Complementary planar terahertz metamaterials. , 2007, Optics express.

[9]  Masayoshi Tonouchi,et al.  Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators , 2013 .

[10]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[11]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[12]  Takuo Tanemura,et al.  Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. , 2011, Nano letters.

[13]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[14]  W. Cai,et al.  A submicron plasmonic dichroic splitter. , 2011, Nature communications.

[15]  Edgar Palacios,et al.  Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. , 2015, Nano letters.

[16]  Xiang Zhang,et al.  Compact magnetic antennas for directional excitation of surface plasmons. , 2012, Nano letters.

[17]  Haitao Jiang,et al.  Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials , 2013 .

[18]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[19]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[20]  A. Polman,et al.  Directional emission from a single plasmonic scatterer , 2014, Nature Communications.

[21]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[22]  X. Zhang,et al.  Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials , 2010, 1101.0738.

[23]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[24]  W. Cai,et al.  Phase-coupled plasmon-induced transparency. , 2010, Physical review letters.

[25]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[26]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[27]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[28]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[29]  Shi-ning Zhu,et al.  Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency. , 2010, Optics express.

[30]  Zhen Tian,et al.  Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Terahertz Metamaterial , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Zhen Tian,et al.  A Broadband Metasurface‐Based Terahertz Flat‐Lens Array , 2015 .

[32]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[33]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[34]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[35]  Zhen Tian,et al.  Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode , 2012 .

[36]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[37]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[38]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[39]  Sergey I. Bozhevolnyi,et al.  Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons , 2014, Light: Science & Applications.

[40]  Carsten Rockstuhl,et al.  Babinet’s principle for optical frequency metamaterials and nanoantennas , 2007 .

[41]  Heinrich Kurz,et al.  Time-domain measurements of surface plasmon polaritons in the terahertz frequency range , 2004 .

[42]  Zhanghua Han,et al.  Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. , 2011, Optics express.

[43]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[44]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[45]  Daniel R. Grischkowsky,et al.  THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet , 2006 .

[46]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[47]  Jiaguang Han,et al.  Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: The effect of a dielectric layer , 2008 .

[48]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[49]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[50]  D. S. Kim,et al.  Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator , 2009 .

[51]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[52]  Georgios Veronis,et al.  Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency , 2011 .

[53]  Ieng-Wai Un,et al.  Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. , 2009, Optics express.

[54]  Daniel Wintz,et al.  Holographic metalens for switchable focusing of surface plasmons. , 2015, Nano letters.

[55]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.