Nonrandom intrafraction target motions and general strategy for correction of spine stereotactic body radiotherapy.

[1]  Martin J Murphy,et al.  Intrafraction geometric uncertainties in frameless image-guided radiosurgery. , 2009, International journal of radiation oncology, biology, physics.

[2]  D. Larson,et al.  Stereotactic body radiosurgery for spinal metastases: a critical review. , 2008, International journal of radiation oncology, biology, physics.

[3]  J. Rock,et al.  Evaluation of residual patient position variation for spinal radiosurgery using the Novalis image guided system. , 2008, Medical physics.

[4]  Peter C Levendag,et al.  Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. , 2008, International journal of radiation oncology, biology, physics.

[5]  L. Verhey,et al.  Effects of residual target motion for image-tracked spine radiosurgery. , 2007, Medical physics.

[6]  K. Bratengeier,et al.  Precision required for dose-escalated treatment of spinal metastases and implications for image-guided radiation therapy (IGRT). , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  P. Gerszten,et al.  Cyberknife radiosurgery for metastatic spine tumors. , 2004, Neurosurgery clinics of North America.

[8]  Jingeng Zhu,et al.  Image‐guided and intensity‐modulated radiosurgery for patients with spinal metastasis , 2003, Cancer.

[9]  Quynh-Thu Le,et al.  Patterns of patient movement during frameless image-guided radiosurgery. , 2003, International journal of radiation oncology, biology, physics.

[10]  Kamil M Yenice,et al.  CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. , 2003, International journal of radiation oncology, biology, physics.

[11]  Steve B. Jiang,et al.  Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. , 2002, Physics in medicine and biology.