Preconditioning Navier–Stokes control using multilevel sequentially semiseparable matrix computations
暂无分享,去创建一个
Michel Verhaegen | Cornelis Vuik | Jan-Willem van Wingerden | Martin B. van Gijzen | Yue Qiu | M. Gijzen | M. Verhaegen | C. Vuik | Yue Qiu | J. Wingerden
[1] Andrew J. Wathen,et al. Preconditioning for boundary control problems in incompressible fluid dynamics , 2015, Numer. Linear Algebra Appl..
[2] Sabine Le Borne,et al. H-matrix Preconditioners in Convection-Dominated Problems , 2005, SIAM J. Matrix Anal. Appl..
[3] Edmond Chow,et al. SMASH: Structured matrix approximation by separation and hierarchy , 2017, Numer. Linear Algebra Appl..
[4] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[5] Joseph E. Pasciak,et al. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations , 2015, Numer. Linear Algebra Appl..
[6] Martin Berggren,et al. Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..
[7] Jean-Yves L'Excellent,et al. Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..
[8] M. Verhaegen,et al. Evaluation of multilevel sequentially semiseparable preconditioners on computational fluid dynamics benchmark problems using Incompressible Flow and Iterative Solver Software , 2018 .
[9] George Biros,et al. Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE Constraints , 2008, SIAM J. Sci. Comput..
[10] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[11] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[12] S. Börm,et al. ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .
[13] Martin Stoll,et al. A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..
[14] Jennifer Annoni,et al. Analysis of axial‐induction‐based wind plant control using an engineering and a high‐order wind plant model , 2016 .
[15] Alfio Borzì,et al. Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.
[16] Joachim Schöberl,et al. Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..
[17] Karl Kunisch,et al. Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..
[18] Sabine Le Borne,et al. Numerische Mathematik Domain decomposition based H-LU preconditioning , 2009 .
[19] Lei Du,et al. A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..
[20] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[21] Peter Benner,et al. Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flow , 2013 .
[22] Per-Gunnar Martinsson,et al. An O(N) algorithm for constructing the solution operator to 2D elliptic boundary value problems in the absence of body loads , 2013, Advances in Computational Mathematics.
[23] M. Benzi,et al. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .
[24] Johannes P. Schlöder,et al. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..
[25] Andrew J. Wathen,et al. Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..
[26] D. Barkley,et al. The Onset of Turbulence in Pipe Flow , 2011, Science.
[27] Eric Darve,et al. A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite‐element matrices , 2016 .
[28] M. Heinkenschloss. Numerical Solution of Implicitly Constrained Optimization Problems * , 2008 .
[29] T. Papanastasiou,et al. Viscous Fluid Flow , 1999 .
[30] Edmond Chow,et al. Accelerating Parallel Hierarchical Matrix-Vector Products via Data-Driven Sampling , 2020, 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[31] L. Grasedyck,et al. Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.
[32] John W. Pearson,et al. Preconditioned iterative methods for Navier-Stokes control problems , 2015, J. Comput. Phys..
[33] Jacek Gondzio,et al. Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization , 2017, Numerische Mathematik.
[34] R. Flemming,et al. Actuator Disc Methods Applied to Wind Turbines , 2016 .
[35] Manfred Laumen. Newton's Method for a Class of Optimal Shape Design Problems , 1996, SIAM J. Optim..
[36] Lexing Ying,et al. A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices , 2014, J. Comput. Phys..
[37] John W. Pearson,et al. Refined saddle-point preconditioners for discretized Stokes problems , 2018, Numerische Mathematik.
[38] L. Grasedyck,et al. Domain-decomposition Based ℌ-LU Preconditioners , 2007 .
[39] Michael A. Saunders,et al. Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..
[40] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[41] Cornelis Vuik,et al. Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow , 2004, Numer. Linear Algebra Appl..
[42] Jianlin Xia,et al. A robust inner–outer hierarchically semi‐separable preconditioner , 2012, Numer. Linear Algebra Appl..
[43] Johan Meyers,et al. Sequential Quadratic Programming (SQP) for optimal control in direct numerical simulation of turbulent flow , 2014, J. Comput. Phys..
[44] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[45] Johan Meyers,et al. Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .
[46] Alle-Jan van der Veen,et al. Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..
[47] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[48] Magne Nordaas,et al. Robust preconditioners for PDE-constrained optimization with limited observations , 2015 .
[49] Kathryn E. Johnson,et al. Evaluating wake models for wind farm control , 2014, 2014 American Control Conference.
[50] Martin B. van Gijzen,et al. Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.
[51] Michel Verhaegen,et al. Efficient System Identification of Heterogeneous Distributed Systems via a Structure Exploiting Extended Kalman Filter , 2011, IEEE Transactions on Automatic Control.
[52] Owe Axelsson,et al. Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..
[53] Michel Verhaegen,et al. Efficient Preconditioners for PDE-Constrained Optimization Problems with a Multi-level Sequentially Semi-Separable Matrix Structure , 2014 .
[54] Julio Hernández,et al. Survey of modelling methods for wind turbine wakes and wind farms , 1999 .
[55] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[56] Michel Verhaegen,et al. Modeling of the flow in wind farms for total power optimization , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).
[57] Qiqi Wang,et al. Simultaneous single-step one-shot optimization with unsteady PDEs , 2015, J. Comput. Appl. Math..
[58] B. Koren,et al. Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .
[59] L. Hou,et al. Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case , 1998 .
[60] Mario Bebendorf,et al. Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..
[61] N. Troldborg. Actuator Line Modeling of Wind Turbine Wakes , 2009 .
[62] Shivkumar Chandrasekaran,et al. A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..
[63] Johannes P. Schlöder,et al. Newton-Picard-Based Preconditioning for Linear-Quadratic Optimization Problems with Time-Periodic Parabolic PDE Constraints , 2012, SIAM J. Sci. Comput..
[64] M. Gijzen,et al. Convergence analysis of multilevel sequentially semiseparable preconditioners , 2015 .
[65] Owe Axelsson,et al. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems , 2016, Numerical Algorithms.
[66] Kuniyoshi Abe. Hybrid Bi-CG methods with a Bi-CG formulation closer to the IDR approach , 2012, Appl. Math. Comput..
[67] Alfio Borzì,et al. Multigrid Methods for PDE Optimization , 2009, SIAM Rev..
[68] Fernando Porté-Agel,et al. The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms , 2013 .
[69] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[70] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .
[71] M. Heinkenschloss,et al. Large-Scale PDE-Constrained Optimization: An Introduction , 2003 .
[72] J. Meyers,et al. Optimal control of energy extraction in wind-farm boundary layers , 2015, Journal of Fluid Mechanics.
[73] S. Börm. ℋ2-matrices – Multilevel methods for the approximation of integral operators , 2004 .
[74] Steffen Börm,et al. Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.
[75] Owe Axelsson,et al. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems , 2016, Numerical Algorithms.
[76] R. Plessix,et al. An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave equation at multiple frequencies , 2018, Computational Geosciences.