Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA

[1]  William J. Sacks,et al.  Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance , 2011 .

[2]  Frank Ewert,et al.  Effects of data aggregation on simulations of crop phenology , 2011 .

[3]  D. Deryng,et al.  Simulating the effects of climate and agricultural management practices on global crop yield , 2011 .

[4]  M. Rivington,et al.  Validation of Biophysical Models: Issues and Methodologies , 2011 .

[5]  Mike Rivington,et al.  Validation of biophysical models: issues and methodologies. A review , 2011, Agronomy for Sustainable Development.

[6]  D. Deryng,et al.  Crop planting dates: an analysis of global patterns. , 2010 .

[7]  C. Müller,et al.  Virtual water content of temperate cereals and maize: Present and potential future patterns , 2010 .

[8]  Hong Yang,et al.  Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water , 2010 .

[9]  P. Döll,et al.  MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling , 2010 .

[10]  P. Thornton,et al.  Generating characteristic daily weather data using downscaled climate model data from the IPCC's fourth assessment , 2009 .

[11]  Jiyuan Liu,et al.  Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection , 2009 .

[12]  Hong Yang,et al.  Using MODAWEC to generate daily weather data for the EPIC model , 2009, Environ. Model. Softw..

[13]  Junguo Liu,et al.  A GIS-based tool for modelling large-scale crop-water relations , 2009, Environ. Model. Softw..

[14]  Linda O. Mearns,et al.  Reliability and input-data induced uncertainty of the EPIC model to estimate climate change impact on sorghum yields in the U.S. Great Plains , 2009 .

[15]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[16]  N. Ramankutty,et al.  Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 , 2008 .

[17]  Jimmy R. Williams,et al.  GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale , 2007 .

[18]  N. Batjes ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2) , 2006 .

[19]  P. Krause,et al.  COMPARISON OF DIFFERENT EFFICIENCY CRITERIA FOR HYDROLOGICAL MODEL ASSESSMENT , 2005 .

[20]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[21]  R. C. Izaurralde,et al.  Historical Development and Applications of the EPIC and APEX Models , 2004 .

[22]  R. Shibasaki,et al.  National spatial crop yield simulation using GIS-based crop production model , 2001 .

[23]  Linda O. Mearns,et al.  Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios , 1999 .

[24]  Mark A. Nearing,et al.  Using soil erosion models for global change studies , 1996 .

[25]  John R. Williams,et al.  The EPIC crop growth model , 1989 .

[26]  Linda O. Mearns,et al.  Spatial scales of climate information for simulating wheat and maize productivity: The case of the US Great Plains , 1998 .

[27]  J. R. Kiniry,et al.  CERES-Maize: a simulation model of maize growth and development , 1986 .

[28]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[29]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .