Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable?

Computing the roots of a scalar polynomial, or the eigenvalues of a matrix polynomial, expressed in the Chebyshev basis $\{ T_k(x)\}$ is a fundamental problem that arises in many applications. In this work, we analyze the backward stability of the polynomial rootfinding problem solved with colleague matrices. In other words, given a scalar polynomial $p(x)$ or a matrix polynomial $P(x)$ expressed in the Chebyshev basis, the question is to determine whether the whole set of computed eigenvalues of the colleague matrix, obtained with a backward stable algorithm, like the QR algorithm, are the set of roots of a nearby polynomial or not. In order to do so, we derive a first order backward error analysis of the polynomial rootfinding algorithm using colleague matrices adapting the geometric arguments in [A. Edelman and H. Murakami, \emph{Polynomial roots for companion matrix eigenvalues}, Math. Comp. 210, 763--776, 1995] to the Chebyshev basis. We show that, if the absolute value of the coefficients of $p(x)$ (respectively, the norm of the coefficients of $P(x)$) are bounded by a moderate number, computing the roots of $p(x)$ (respectively, the eigenvalues of $P(x)$) via the eigenvalues of its colleague matrix using a backward stable eigenvalue algorithm is backward stable. This backward error analysis also expands on the very recent work [Y. Nakatsukasa and V. Noferini, \emph{On the stability of computing polynomial roots via confederate linearizations}, To appear in Math. Comp.] that already showed that this algorithm is not backward normwise stable if the coefficients of the polynomial $p(x)$ do not have moderate norms.

[1]  Alex Townsend,et al.  Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..

[2]  F. R. Gantmakher The Theory of Matrices , 1984 .

[3]  Robert M. Corless,et al.  Stability of rootfinding for barycentric Lagrange interpolants , 2013, Numerical Algorithms.

[4]  John Maroulas,et al.  Polynomials with respect to a general basis. I. Theory , 1979 .

[5]  Froilán M. Dopico,et al.  Backward stability of polynomial root-finding using Fiedler companion matrices , 2014 .

[6]  Yuji Nakatsukasa,et al.  On the stability of computing polynomial roots via confederate linearizations , 2015, Math. Comput..

[7]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[8]  John Maroulas,et al.  Polynomials with respect to a general basis. II. Applications , 1979 .

[9]  D. Kressner,et al.  Chebyshev interpolation for nonlinear eigenvalue problems , 2012 .

[10]  C. Reinsch,et al.  Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .

[11]  Paul Van Dooren,et al.  Optimal scaling of block companion pencils , 2004 .

[12]  S. Barnett Polynomials and linear control systems , 1983 .

[13]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[14]  J. H. Wilkinson,et al.  Practical Problems Arising in the Solution of Polynomial Equations , 1971 .

[15]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[16]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[17]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[18]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[19]  Paul Van Dooren,et al.  Optimal Scaling of Companion Pencils for the QZ-Algorithm , 2003 .

[20]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[21]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[22]  Federico Poloni,et al.  Duality of matrix pencils, Wong chains and linearizations , 2015 .

[23]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[24]  Paul Van Dooren,et al.  Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization , 2015, SIAM J. Matrix Anal. Appl..

[25]  Stephen Barnett,et al.  LEVERRIER'S ALGORITHM FOR ORTHOGONAL POLYNOMIAL BASES , 1996 .

[26]  Froilán M. Dopico,et al.  Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..

[27]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .