Freestanding Oxide Membranes for Epitaxial Ferroelectric Heterojunctions.

Since facile routes to fabricate freestanding oxide membranes were previously established, tremendous efforts have been made to further improve their crystallinity, and fascinating physical properties have been also reported in heterointegrated freestanding membranes. Here, we demonstrate our synthetic recipe to manufacture highly crystalline perovskite SrRuO3 freestanding membranes using new infinite-layer perovskite SrCuO2 sacrificial layers. To accomplish this, SrRuO3/SrCuO2 bilayer thin films are epitaxially grown on SrTiO3 (001) substrates, and the topmost SrRuO3 layer is chemically exfoliated by etching the SrCuO2 template layer. The as-exfoliated SrRuO3 membranes are mechanically transferred to various nonoxide substrates for the subsequent BaTiO3 film growth. Finally, freestanding heteroepitaxial junctions of ferroelectric BaTiO3 and metallic SrRuO3 are realized, exhibiting robust ferroelectricity. Intriguingly, the enhancement of piezoelectric responses is identified in freestanding BaTiO3/SrRuO3 heterojunctions with mixed ferroelectric domain states. Our approaches will offer more opportunities to develop heteroepitaxial freestanding oxide membranes with high crystallinity and enhanced functionality.

[1]  Lang Chen,et al.  Synthesis of freestanding perovskite oxide thin films by using brownmillerite SrCoO2.5 as a sacrificial layer , 2023, Applied Physics Letters.

[2]  M. Cuoco,et al.  Materials challenges for SrRuO3: From conventional to quantum electronics , 2022, APL Materials.

[3]  Shinbuhm Lee,et al.  Single-crystalline-level properties of ultrathin SrRuO3 flexible membranes with wide and clean surface , 2022, npj Flexible Electronics.

[4]  Hua Zhou,et al.  A Generic Sacrificial Layer for Wide‐Range Freestanding Oxides with Modulated Magnetic Anisotropy , 2022, Advanced Functional Materials.

[5]  Sanghyeon Kim,et al.  Thickness‐Driven Morphotropic Phase Transition in Metastable Ferroelectric CaTiO3 Films , 2022, Advanced Electronic Materials.

[6]  Y. Hao,et al.  Nonvolatile ferroelectric domain wall memory integrated on silicon , 2021, Nature Communications.

[7]  Lang Chen,et al.  High‐Conductive Protonated Layered Oxides from H2O Vapor‐Annealed Brownmillerites , 2021, Advanced materials.

[8]  Qixiang Wang,et al.  Enhanced oxygen evolution reaction by stacking single-crystalline freestanding SrRuO3 , 2021, Applied Catalysis B: Environmental.

[9]  Run‐Wei Li,et al.  Cooperative control of perpendicular magnetic anisotropy via crystal structure and orientation in freestanding SrRuO3 membranes , 2021, npj Flexible Electronics.

[10]  C. Eom,et al.  Heterogeneous integration of single-crystalline rutile nanomembranes with steep phase transition on silicon substrates , 2021, Nature Communications.

[11]  J. E. ten Elshof,et al.  Epitaxial lift-off of freestanding (011) and (111) SrRuO3 thin films using a water sacrificial layer , 2021, Scientific Reports.

[12]  J. MacManus‐Driscoll,et al.  High Yield Transfer of Clean Large-Area Epitaxial Oxide Thin Films , 2021, Nano-micro letters.

[13]  Yao-Wen Chang,et al.  A Fast Route Towards Freestanding Single-Crystalline Oxide Thin Films by Using YBa2Cu3O7-x as a Sacrificial Layer , 2020, Nanoscale Research Letters.

[14]  Ming Liu,et al.  Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes , 2020, Science Advances.

[15]  H. Hwang,et al.  Strain-induced room-temperature ferroelectricity in SrTiO3 membranes , 2020, Nature Communications.

[16]  H. Hwang,et al.  Extreme tensile strain states in La0.7Ca0.3MnO3 membranes , 2020, Science.

[17]  Noy Cohen,et al.  Giant Superelastic Piezoelectricity in Flexible Ferroelectric BaTiO3 Membranes. , 2020, ACS nano.

[18]  Sang-Hoon Bae,et al.  Heterogeneous integration of single-crystalline complex-oxide membranes , 2020, Nature.

[19]  C. Nan,et al.  Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation , 2019, Science.

[20]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[21]  Z. Liao,et al.  Large orbital polarization in nickelate-cuprate heterostructures by dimensional control of oxygen coordination , 2019, Nature Communications.

[22]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[23]  R. Maboudian,et al.  High Speed Epitaxial Perovskite Memory on Flexible Substrates , 2017, Advanced materials.

[24]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[25]  D. Fong,et al.  Single-Crystalline SrRuO3 Nanomembranes: A Platform for Flexible Oxide Electronics. , 2016, Nano letters.

[26]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[27]  Sergei V. Kalinin,et al.  A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications , 2015, Science and technology of advanced materials.

[28]  G. Koster,et al.  Manipulating oxygen sublattice in ultrathin cuprates: A new direction to engineer oxides , 2015 .

[29]  J. E. Elshof,et al.  Control of oxygen sublattice structure in ultra-thin SrCuO2 films studied by X-ray photoelectron diffraction , 2013 .

[30]  H. N. Lee,et al.  Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3–δ , 2013, Advanced materials.

[31]  Jingfeng Li,et al.  Thickness-Dependent Phase Transition and Piezoelectric Response in Textured Nb-Doped Pb(Zr0.52Ti0.48)O3 Thin Films , 2010 .

[32]  A. Petford-Long,et al.  Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy , 2010 .

[33]  Wenlong Cheng,et al.  Freestanding ultrathin nano-membranes via self-assembly , 2009 .

[34]  D. Muller,et al.  Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films , 2009 .

[35]  G. Koster,et al.  Room temperature epitaxial stabilization of a tetragonal phase in ARuO3 (A=Ca and Sr) thin films , 2008, 0802.1880.

[36]  Ramamoorthy Ramesh,et al.  Room temperature exchange bias and spin valves based on BiFeO3∕SrRuO3∕SrTiO3∕Si (001) heterostructures , 2007 .

[37]  Y. Takamura,et al.  Disorder-induced carrier localization in ultrathin strained SrRuO3 epitaxial films , 2006 .

[38]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[39]  J. R. Contreras,et al.  Lattice strain and lattice expansion of the SrRuO3 layers in SrRuO3/PbZr0.52Ti0.48O3/SrRuO3 multilayer thin films , 2002 .

[40]  A. Haghiri-Gosnet,et al.  Microstructure and magnetic properties of strained La0.7Sr0.3MnO3 thin films , 2000 .

[41]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[42]  M. Greenblatt,et al.  Local distortions in the colossal magnetoresistive manganates La0.70Ca0.30MnO3, La0.80Ca0.20MnO3 and La0.70Sr0.30MnO3 revealed by total neutron diffraction , 1999 .

[43]  C. Eom,et al.  Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films , 1998 .

[44]  Julia M. Phillips,et al.  Substrate selection for high‐temperature superconducting thin films , 1996 .

[45]  Chang-Beom Eom,et al.  Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes , 1993 .

[46]  W. F. Peck,et al.  Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1–xCaxRuO3 (0 ≤ x ≤ 1) , 1992, Science.

[47]  Lang Chen,et al.  Converting Brownmillerite to Alternate Layers of Oxygen‐Deficient and Conductive Nano‐Sheets with Enhanced Thermoelectric Properties , 2022 .

[48]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.