A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces

In this article we develop a posteriori error estimates for general second order elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clement or Scott-Zhang interpolation operators, without need of suitable modications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good eectivity indices.

[1]  Kenneth Eriksson Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .

[2]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[3]  Kunibert G. Siebert,et al.  A convergence proof for adaptive finite elements without lower bound , 2011 .

[4]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[5]  Thomas Apel,et al.  A Priori Mesh Grading for an Elliptic Problem with Dirac Right-Hand Side , 2011, SIAM J. Numer. Anal..

[6]  Thomas Apel,et al.  Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P , 1996 .

[7]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[8]  B. Muckenhoupt,et al.  Weighted norm inequalities for the Hardy maximal function , 1972 .

[9]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[10]  Ivo Babugka,et al.  A Finite Element Scheme for Domains with Corners , 2022 .

[11]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[12]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[13]  A. Quarteroni,et al.  On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems , 2008 .

[14]  Rodolfo Rodríguez,et al.  A posteriori error estimates for elliptic problems with Dirac delta source terms , 2006, Numerische Mathematik.

[15]  HARDY-TYPE INEQUALITIES , 2000 .

[16]  E. Casas L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .

[17]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[18]  Carlo D'Angelo,et al.  Finite Element Approximation of Elliptic Problems with Dirac Measure Terms in Weighted Spaces: Applications to One- and Three-dimensional Coupled Problems , 2012, SIAM J. Numer. Anal..

[19]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[20]  Christine Bernardi,et al.  Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.

[21]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[22]  Seng-Kee Chua,et al.  On Weighted Sobolev Spaces , 1996, Canadian Journal of Mathematics.

[23]  T. Kilpeläinen Smooth approximation in weighted Sobolev spaces , 1997 .

[24]  Rodolfo Rodríguez,et al.  An adaptive stabilized finite element scheme for a water quality model , 2007 .

[25]  I. Babuska Error-bounds for finite element method , 1971 .

[26]  Matthias K. Gobbert,et al.  Finite element approximation for time-dependent diffusion with measure-valued source , 2012, Numerische Mathematik.

[27]  P. Morin,et al.  A posteriori error estimates with point sources in fractional sobolev spaces , 2015, 1507.08247.

[28]  G. Welland,et al.  Weighted norm inequalities for fractional integrals , 1975 .

[29]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[30]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .