Classification of flexible Kokotsakis polyhedra with quadrangular base

A Kokotsakis polyhedron with quadrangular base is a neighborhood of a quadrilateral in a quad surface. Generically, a Kokotsakis polyhedron is rigid. Up to now, several flexible classes were known, but a complete classification was missing. In the present paper, we provide such a classification. The analysis is based on the fact that the dihedral angles of a Kokotsakis polyhedron are related by an Euler-Chasles correspondence. It results in a diagram of elliptic curves covering complex projective planes. A polyhedron is flexible if and only if this diagram commutes.

[1]  Johannes Wallner,et al.  The focal geometry of circular and conical meshes , 2008, Adv. Comput. Math..

[2]  Oleg Karpenkov,et al.  On the flexibility of Kokotsakis meshes , 2008, 0812.3050.

[3]  V. Dragović,et al.  Poncelet Porisms and Beyond , 2011 .

[4]  Tim Hoffmann,et al.  On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces , 2008 .

[5]  Ivan Izmestiev,et al.  Deformation of Quadrilaterals and Addition on Elliptic Curves , 2015, Moscow Mathematical Journal.

[6]  Yutaka Nishiyama,et al.  MIURA FOLDING: APPLYING ORIGAMI TO SPACE EXPLORATION , 2010 .

[7]  J. Ritt,et al.  Prime and composite polynomials , 1922 .

[8]  Flexible suspensions with a hexagonal equator , 2009, 0905.3683.

[9]  Georg Nawratil,et al.  Reducible compositions of spherical four-bar linkages with a spherical coupler component , 2011 .

[10]  A. Kokotsakis,et al.  Über bewegliche Polyeder , 1933 .

[11]  Hellmuth Stachel,et al.  A kinematic approach to Kokotsakis meshes , 2010, Comput. Aided Geom. Des..

[12]  A. Gaifullin Flexible cross-polytopes in spaces of constant curvature , 2013, 1312.7608.

[13]  F. Pakovich Prime and composite Laurent polynomials , 2007, 0710.3860.

[14]  R. Connelly An attack on rigidity. I, II , 1975 .

[15]  H. Graf,et al.  Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache , 1931 .

[16]  R. Bricard Mémoire sur la théorie de l'octaèdre articulé , 1897 .

[17]  Georg Nawratil,et al.  Flexible Octahedra in the Projective Extension of the Euclidean 3-Space , 2010 .

[18]  Milena Radnović,et al.  Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics , 2011 .

[19]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .