Higher order Quasi-Monte Carlo integration for Bayesian Estimation
暂无分享,去创建一个
Josef Dick | Christoph Schwab | Quoc T. Le Gia | Robert N. Gantner | C. Schwab | J. Dick | R. Gantner | Q. Gia
[1] Christoph Schwab,et al. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .
[2] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[3] Z. Ciesielski,et al. Construction of an orthonormal basis in $C^{m}(I^{d})$ and $W^{m}_{p}(I^{d})$ , 1972 .
[4] Takashi Goda,et al. Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces , 2013, J. Comput. Appl. Math..
[5] Josef Dick,et al. Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.
[6] J. Rappaz,et al. Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .
[7] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[8] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[9] J. Koenderink. Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[10] Peter Kritzer,et al. On a projection-corrected component-by-component construction , 2016, J. Complex..
[11] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[12] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[13] Dirk Nuyens,et al. Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.
[14] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[15] J. Dick. THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.
[16] P. Revesz. Interpolation and Approximation , 2010 .
[17] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[18] C. Schwab,et al. Scaling limits in computational Bayesian inversion , 2014 .
[19] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[20] Christoph Schwab,et al. QMC Galerkin Discretization of Parametric Operator Equations , 2013 .
[21] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[22] Christoph Schwab,et al. Computational Higher Order Quasi-Monte Carlo Integration , 2014, MCQMC.
[23] Roger Levin,et al. Consistency. , 2020, Journal of the American Dental Association.
[24] Frances Y. Kuo,et al. Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..
[25] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[26] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[27] Christoph Schwab,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .
[28] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[29] Frances Y. Kuo,et al. Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.
[30] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[31] Josef Dick,et al. Construction algorithms for higher order polynomial lattice rules , 2011, J. Complex..
[32] Josef Dick,et al. Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations , 2014, SIAM/ASA J. Uncertain. Quantification.
[33] Takehito Yoshiki,et al. Bounds on Walsh coefficients by dyadic difference and a new Koksma-Hlawka type inequality for Quasi-Monte Carlo integration , 2015, 1504.03175.
[34] Albert Cohen,et al. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .
[35] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[36] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[37] CH' , 2018, Dictionary of Upriver Halkomelem.
[38] Victor Nistor,et al. HIGH-ORDER GALERKIN APPROXIMATIONS FOR PARAMETRIC SECOND-ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .
[39] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[40] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[41] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[42] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[43] Christoph Schwab,et al. Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs , 2011 .
[44] Josef Dick,et al. Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..
[45] C. Schwab,et al. Sparsity in Bayesian inversion of parametric operator equations , 2014 .
[46] Christoph Schwab,et al. REGULARITY AND GENERALIZED POLYNOMIAL CHAOS APPROXIMATION OF PARAMETRIC AND RANDOM SECOND-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .