Higher order Quasi-Monte Carlo integration for Bayesian Estimation

We analyze combined Quasi-Monte Carlo quadrature and Finite Element approximations in Bayesian estimation of solutions to countably-parametric operator equations with holomorphic dependence on the parameters as considered in [Cl.~Schillings and Ch.~Schwab: Sparsity in Bayesian Inversion of Parametric Operator Equations. Inverse Problems, {\bf 30}, (2014)]. Such problems arise in numerical uncertainty quantification and in Bayesian inversion of operator equations with distributed uncertain inputs, such as uncertain coefficients, uncertain domains or uncertain source terms and boundary data. We show that the parametric Bayesian posterior densities belong to a class of weighted Bochner spaces of functions of countably many variables, with a particular structure of the QMC quadrature weights: up to a (problem-dependent, and possibly large) finite dimension $S$ product weights can be used, and beyond this dimension, weighted spaces with so-called SPOD weights are used to describe the solution regularity. We establish error bounds for higher order Quasi-Monte Carlo quadrature for the Bayesian estimation based on [J.~Dick, Q.T.~LeGia and Ch.~Schwab, Higher order Quasi-Monte Carlo integration for holomorphic, parametric operator equations, Report 2014-23, SAM, ETH Z\"urich]. It implies, in particular, regularity of the parametric solution and of the countably-parametric Bayesian posterior density in SPOD weighted spaces. This, in turn, implies that the Quasi-Monte Carlo quadrature methods in [J. Dick, F.Y.~Kuo, Q.T.~Le Gia, D.~Nuyens, Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations, SINUM (2014)] are applicable to these problem classes, with dimension-independent convergence rates $\calO(N^{-1/p})$ of $N$-point HoQMC approximated Bayesian estimates, where $0

[1]  Christoph Schwab,et al.  Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .

[2]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[3]  Z. Ciesielski,et al.  Construction of an orthonormal basis in $C^{m}(I^{d})$ and $W^{m}_{p}(I^{d})$ , 1972 .

[4]  Takashi Goda,et al.  Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces , 2013, J. Comput. Appl. Math..

[5]  Josef Dick,et al.  Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.

[6]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[7]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[8]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[9]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[10]  Peter Kritzer,et al.  On a projection-corrected component-by-component construction , 2016, J. Complex..

[11]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[12]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[13]  Dirk Nuyens,et al.  Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.

[14]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[15]  J. Dick THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.

[16]  P. Revesz Interpolation and Approximation , 2010 .

[17]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[18]  C. Schwab,et al.  Scaling limits in computational Bayesian inversion , 2014 .

[19]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[20]  Christoph Schwab,et al.  QMC Galerkin Discretization of Parametric Operator Equations , 2013 .

[21]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[22]  Christoph Schwab,et al.  Computational Higher Order Quasi-Monte Carlo Integration , 2014, MCQMC.

[23]  Roger Levin,et al.  Consistency. , 2020, Journal of the American Dental Association.

[24]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[25]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[26]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[27]  Christoph Schwab,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .

[28]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[29]  Frances Y. Kuo,et al.  Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.

[30]  T. J. Dodwell,et al.  A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.

[31]  Josef Dick,et al.  Construction algorithms for higher order polynomial lattice rules , 2011, J. Complex..

[32]  Josef Dick,et al.  Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations , 2014, SIAM/ASA J. Uncertain. Quantification.

[33]  Takehito Yoshiki,et al.  Bounds on Walsh coefficients by dyadic difference and a new Koksma-Hlawka type inequality for Quasi-Monte Carlo integration , 2015, 1504.03175.

[34]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[35]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[36]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[37]  CH' , 2018, Dictionary of Upriver Halkomelem.

[38]  Victor Nistor,et al.  HIGH-ORDER GALERKIN APPROXIMATIONS FOR PARAMETRIC SECOND-ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .

[39]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[40]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[41]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[42]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[43]  Christoph Schwab,et al.  Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs , 2011 .

[44]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[45]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2014 .

[46]  Christoph Schwab,et al.  REGULARITY AND GENERALIZED POLYNOMIAL CHAOS APPROXIMATION OF PARAMETRIC AND RANDOM SECOND-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .