A geometrically and materially non‐linear piezoelectric three‐dimensional‐beam finite element formulation including warping effects

This paper is concerned with a three-dimensional piezoelectric beam formulation and its finite element implementation. The developed model considers geometrically and materially non-linear effects. An eccentric beam formulation is derived based on the Timoshenko kinematics. The kinematic assumptions are extended by three additional warping functions of the cross section. These functions follow from torsion and piezoelectrically induced shear deformations. The presented beam formulation incorporates large displacements and finite rotations and allows the investigation of stability problems. The finite element model has two nodes with nine mechanical and five electrical degrees of freedom. It provides an accurate approximation of the electric potential, which is assumed to be linear in the direction of the beam axis and quadratic within the cross section. The mechanical degrees of freedom are three displacements, three rotations and three scaling factors for the warping functions. The latter are computed in a preprocess by solving a two-dimensional in-plane equilibrium condition with the finite element method. The gained warping patterns are considered within the integration through the cross section of the beam formulation. With respect to material non-linearities, which arise in ferroelectric materials, the scalar Preisach model is embedded in the formulation. This model is a mathematical model for the general description of hysteresis phenomena. Its application to piezoelectric materials leads to a phenomenological model for ferroelectric hysteresis effects. Here, the polarization direction is assumed to be constant, which leads to unidirectional constitutive equations. Some examples demonstrate the capability of the proposed model.

[1]  C. Sun,et al.  Formulation of an adaptive sandwich beam , 1996 .

[2]  Yann Pasco,et al.  A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis , 2004 .

[3]  Ser Tong Quek,et al.  A Model for the Analysis of Beams with Embedded Piezoelectric Layers , 2002 .

[4]  Q. Jiang,et al.  Characterization of electroelastic beams under biasing fields with applications in buckling analysis , 2002 .

[5]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[6]  Brian P. Baillargeon,et al.  Active Vibration Suppression of Sandwich Beams using Piezoelectric Shear Actuators: Experiments and Numerical Simulations , 2005 .

[7]  M. Touratier,et al.  Refined finite element for piezoelectric laminated composite beams , 2004 .

[8]  Manfred Kaltenbacher,et al.  Finite element analysis of hysteresis effects in piezoelectric transducers , 2000, Smart Structures.

[9]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[10]  D. Saravanos,et al.  Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells , 1999 .

[11]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[12]  Abhijit Mukherjee,et al.  Piezolaminated beams with large deformations , 2002 .

[13]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[14]  Roger Ohayon,et al.  A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms , 1997 .

[15]  Sven Klinkel,et al.  A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics , 2006 .

[16]  Koji Fujimoto,et al.  Microelectromechanical flexure PZT actuated optical scanner: static and resonance behavior , 2005 .

[17]  Christopher Niezrecki,et al.  Piezoelectric actuation: State of the art , 2001 .

[18]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[19]  M. Saif On a tunable bistable MEMS-theory and experiment , 2000, Journal of Microelectromechanical Systems.

[20]  J. A. Barker,et al.  Magnetic hysteresis and minor loops: models and experiments , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Ser Tong Quek,et al.  Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator , 2000 .

[22]  S. Klinkel,et al.  A Mixed Finite Element Formulation for Piezoelectric Materials , 2005 .

[23]  F. Gruttmann,et al.  A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections , 1998 .

[24]  Osama J. Aldraihem,et al.  Smart beams with extension and thickness-shear piezoelectric actuators , 2000 .

[25]  S. Alkoy,et al.  Piezoelectric Sensors and Sensor Materials , 1998 .

[26]  G. Altay,et al.  Some comments on the higher order theories of piezoelectric, piezothermoelastic and thermopiezoelectric rods and shells , 2003 .

[27]  Romesh C. Batra,et al.  Mixed variational principles in non-linear electroelasticity , 1995 .

[28]  Albert P. Pisano,et al.  Surface micromachined piezoelectric accelerometers (PiXLs) , 2001 .

[29]  Keith A. Seffen,et al.  Net shape formed spiral and helical piezoelectric actuators , 2002 .

[30]  A. Pisano,et al.  Modeling and optimal design of piezoelectric cantilever microactuators , 1997 .

[31]  S. J. Gross,et al.  Lead-zirconate-titanate-based piezoelectric micromachined switch , 2003 .

[32]  Dimitris A. Saravanos,et al.  Coupled Layerwise Analysis of Composite Beams with Embedded Piezoelectric Sensors and Actuators , 1995 .

[33]  Eric Laboure,et al.  Characterization and model of ferroelectrics based on experimental Preisach density , 2002 .

[34]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[35]  S. Govindjee,et al.  Anisotropic bending-torsion coupling for warping in a non-linear beam , 2003 .

[36]  Tim W. Button,et al.  On piezoelectric super-helix actuators , 2002 .

[37]  Abhijit Mukherjee,et al.  Active control of dynamic instability of piezolaminated imperfect columns , 2002 .

[38]  R. Ohayon,et al.  A Plate Electrostrictive Finite Element - Part I: Modeling and Variational Formulations , 2001 .

[39]  Nagi G. Naganathan,et al.  Preisach modeling of hysteresis for piezoceramic actuator system , 2002 .

[40]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[41]  Werner Wagner,et al.  Shear stresses in prismatic beams with arbitrary cross‐sections , 1999 .

[42]  Osama J. Aldraihem,et al.  Mechanics and control of coupled bending and twisting vibration of laminated beams , 1997 .

[43]  B. Jiao,et al.  Torsional modes in piezo helical springs , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Michael Krommer,et al.  An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics , 2002 .

[45]  Junji Tani,et al.  Intelligent Material Systems: Application of Functional Materials , 1998 .

[46]  C. Sun,et al.  Use of thickness-shear mode in adaptive sandwich structures , 1995 .

[47]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[48]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[49]  Manfred Kaltenbacher,et al.  Finite element analysis of ferroelectric hysteresis effects in piezoelectric transducers , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[50]  R.V. Iyer,et al.  Hysteresis parameter identification with limited experimental data , 2004, IEEE Transactions on Magnetics.

[51]  Roger Ohayon,et al.  Finite element modelling of hybrid active–passive vibration damping of multilayer piezoelectric sandwich beams—part I: Formulation , 2001 .

[52]  A. Safari,et al.  HIGH-DISPLACEMENT SPIRAL PIEZOELECTRIC ACTUATORS , 1999 .