arXiv : HEP Software Foundation Community White Paper Working Group - Detector Simulation

A working group on detector simulation was formed as part of the high-energy physics (HEP) Software Foundation's initiative to prepare a Community White Paper that describes the main software challenges and opportunities to be faced in the HEP field over the next decade. The working group met over a period of several months in order to review the current status of the Full and Fast simulation applications of HEP experiments and the improvements that will need to be made in order to meet the goals of future HEP experimental programmes. The scope of the topics covered includes the main components of a HEP simulation application, such as MC truth handling, geometry modeling, particle propagation in materials and fields, physics modeling of the interactions of particles with matter, the treatment of pileup and other backgrounds, as well as signal processing and digitisation. The resulting work programme described in this document focuses on the need to improve both the software performance and the physics of detector simulation. The goals are to increase the accuracy of the physics models and expand their applicability to future physics programmes, while achieving large factors in computing performance gains consistent with projections on available computing resources.

A Gheata | P Canal | W Pokorski | G Cosmo | G Lima | M Novak | D H Wright | S Roiser | B Viren | S Vallecorsa | Ivantchenko | J Harvey | I Osborne | P Mato | K. Genser | K. Pedro | Z. Marshall | M. Asai | D. Wright | K. Herner | R. Bianchi | J. Chapman | A. Dotti | S. Farrell | R. Mount | S. Vallecorsa | S. Banerjee | G. Cosmo | J. Harvey | V. Elvira | S. Sekmen | D. Wright | M. Hildreth | M. Mooney | A. Lyon | D. Konstantinov | L. Welty-Rieger | Michela Paganini | B. Nachman | T. Yang | T. Junk | R. Kutschke | H. Wenzel | P. Mato | M. Verderi | B. Viren | A. Ribon | V. Ivantchenko | J. Apostolakis | P. Lebrun | L. Fields | D. Ruterbories | S. Roiser | S. Easo | G. Corti | W. Pokorski | R. Cenci | J. Yarba | I. Osborne | M. Paganini | M. Rama | S. Wenzel | M. Gheata | A. Gheata | C. Zhang | B. Siddi | L. Oliveira | J. Raaf | X. Qian | R. Hatcher | A. Norman | M. Kirby | F. Hariri | P. Canal | J. Mousseau | E. Snider | R Hatcher | S Banerjee | K Herner | P Lebrun | R Cenci | G Corti | S Easo | M Gheata | M Verderi | M Rama | L Fields | J Mousseau | HEP Software Foundation J Apostolakis | M Asai | R Bianchi | J Chapman | L de Oliveira | A Dotti | V Elvira | S Farrell | K Genser | F Hariri | M Hildreth | V Ivantchenko | T Junk | M Kirby | D Konstantinov | R Kutschke | A Lyon | Z Marshall | M Mooney | R Mount | B Nachman | A Norman | M Paganini | K Pedro | X Qian | J Raaf | A Ribon | D Ruterbories | S Sekmen | B Siddi | E Snider | H Wenzel | S Wenzel | T Yang | J Yarba | C Zhang | M. Novak | G. Lima | Riccardo Bianchi | S. Jun | H. S. F. J. Apostolakis | C. Zhang | J. D. Chapman | D. Konstantinov | T. Junk | Z. Marshall

[1]  J. McCormick,et al.  Geometry Description Markup Language for Physics Simulation and Analysis Applications , 2006, IEEE Transactions on Nuclear Science.

[2]  Andrea Dotti,et al.  Extending Geant4 Parallelism with external libraries (MPI, TBB) and its use on HPC resources , 2015, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[3]  S. Incerti,et al.  Geant4 electromagnetic physics for high statistic simulation of LHC experiments , 2012 .

[4]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[5]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[6]  B. Fleming The MicroBooNE Technical Design Report , 2012 .

[7]  Paolo Calafiura,et al.  Fine grained event processing on HPCs with the ATLAS Yoda system , 2015 .

[8]  Jim Kowalkowski,et al.  The art framework , 2012 .

[9]  J. Yarba,et al.  DoSSiER: Database of Scientific Simulation and Experimental Results , 2016 .

[10]  John Apostolakis,et al.  New software library of geometrical primitives for modeling of solids used in Monte Carlo detector simulations , 2012 .

[11]  Rene Brun,et al.  Towards a high performance geometry library for particle-detector simulations , 2015 .

[12]  M. Tripathi,et al.  Enhancement of NEST Capabilities for Simulating Low-Energy Recoils in Liquid Xenon , 2013, 1307.6601.

[13]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[14]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[15]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[16]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[17]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects , 2015 .

[18]  Margot Gerritsen,et al.  A CUDA Monte Carlo simulator for radiation therapy dosimetry based on Geant4 , 2014, ICS 2014.

[19]  A. Schälicke,et al.  Geant4 electromagnetic physics for the LHC and other HEP applications , 2011 .

[20]  K. Werner The hadronic interaction model EPOS , 2008 .

[21]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[22]  Philippe Canal,et al.  GeantV: from CPU to accelerators , 2016 .

[23]  Andrea Dotti,et al.  Multi-threaded Geant4 on the Xeon-Phi with complex high-energy physics geometry , 2015, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[24]  Michael Hildreth,et al.  Upgrades for the CMS simulation , 2015 .

[25]  Stephan Mertens,et al.  Random numbers for large scale distributed Monte Carlo simulations , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Mark A. Moraes,et al.  Parallel random numbers: As easy as 1, 2, 3 , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[27]  Frank Gaede,et al.  DD4hep: A Detector Description Toolkit for High Energy Physics Experiments , 2014 .

[28]  Pierre L'Ecuyer,et al.  Random numbers for parallel computers: Requirements and methods, with emphasis on GPUs , 2015, Math. Comput. Simul..

[29]  P. Gras,et al.  Les Houches 2015: Physics at TeV colliders - new physics working group report , 2016, 1605.02684.

[30]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[31]  Simon Blyth,et al.  Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiXTM , 2019, EPJ Web of Conferences.

[32]  Paolo Calafiura,et al.  Multi-threaded ATLAS Simulation on Intel Knights Landing Processors , 2017 .

[33]  Federico Carminati,et al.  Rethinking particle transport in the many-core era towards GEANT 5 , 2012 .

[34]  G. N. Perdue,et al.  Design, calibration, and performance of the MINERvA detector , 2013, 1305.5199.

[35]  A. Aurisano,et al.  First Measurement of Electron Neutrino Appearance in NOvA. , 2016, Physical review letters.

[36]  Luciano Pandola,et al.  Geant4 Electromagnetic Physics for LHC Upgrade , 2014 .

[37]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[38]  D. Brandt,et al.  Semiconductor phonon and charge transport Monte Carlo simulation using Geant4 , 2014, 1403.4984.

[39]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[40]  Benjamin Nachman,et al.  Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. , 2017, Physical review letters.

[41]  L Maigne,et al.  Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. , 2015, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[42]  Bruce Knuteson Systematic analysis of HEP collider data , 2003 .

[43]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[46]  C BlythSimon,et al.  Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiX™ , 2017 .

[47]  G. Savvidy,et al.  Spectrum and entropy of C-systems MIXMAX random number generator , 2015, 1510.06274.

[48]  Federico Carminati,et al.  Adaptive track scheduling to optimize concurrency and vectorization in GeantV , 2015 .

[49]  D. Caruge,et al.  Recent Developments in Geant4 , 2014, ICS 2014.

[50]  E. Ritsch Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment , 2014 .

[51]  G. Grindhammer,et al.  The fast simulation of electromagnetic and hadronic showers , 1990 .