Asymptotics Beats Monte Carlo: The Case of Correlated Local Vol Baskets

We consider a basket of options with both positive and negative weights in the case where each asset has a smile, i.e., evolves according to its own local volatility and the driving Brownian motions are correlated. In the case of positive weights, the model has been considered in a previous work by Avellaneda, Boyer-Olson, Busca, and Friz. We derive highly accurate analytic formulas for the prices and the implied volatilities of such baskets. The relative errors are of order 10−4 (or better) for T=½, 10−3 for T=2, and 10−2 for T=10 (years). The computational time required to implement these formulas is under two seconds even in the case of a basket on 100 assets. The combination of accuracy and speed makes these formulas potentially attractive both for calibration and for pricing. In comparison, simulation-based techniques are prohibitively slow in achieving a comparable degree of accuracy. Thus the present work opens up a new paradigm in which asymptotics may arguably be used for pricing as well as for calibration. © 2014 Wiley Periodicals, Inc.

[1]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[2]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[3]  P. Henry-Labordère Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing , 2008 .

[4]  P. Hagan,et al.  Equivalent Black volatilities , 1999 .

[5]  PRICING AND HEDGING SPREAD OPTIONS IN A LOG-NORMAL MODEL , 2003 .

[6]  Vladimir V. Piterbarg Markovian Projection Method for Volatility Calibration , 2006 .

[7]  S. Kusuoka Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus , 2003 .

[8]  V. Linetsky,et al.  Constant Elasticity of Variance (CEV) Diffusion Model , 2010 .

[9]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[10]  S. Ninomiya,et al.  Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.

[11]  Jieyun Zhou,et al.  Multi-asset spread option pricing and hedging , 2007 .

[12]  Antoine Jacquier,et al.  Marginal Density Expansions for Diffusions and Stochastic Volatility I: Theoretical Foundations , 2011, 1111.2462.

[13]  Stanislav Molchanov,et al.  DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .

[14]  Dawn Hunter Pricing Asian and basket options via Taylor expansion , 2002 .

[15]  Petter Bjerksund,et al.  Closed form spread option valuation , 2006 .

[16]  R. Azencott Densité des diffusions en temps petit: développements asymptotiques , 1984 .

[17]  Paolo Pellizzari,et al.  Efficient Monte Carlo pricing of European options¶using mean value control variates , 2001 .

[18]  Peter K. Friz,et al.  Semi-closed form cubature and applications to financial diffusion models , 2010 .

[19]  René Carmona,et al.  Pricing and Hedging Spread Options , 2003, SIAM Rev..

[20]  S. Minakshisundaram,et al.  Eigenfunctions on Riemannian Manifolds , 1953 .

[21]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[22]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[24]  P. Hagan,et al.  MANAGING SMILE RISK , 2002 .

[25]  K. Yosida On the fundamental solution of the parabolic equation in a Riemannian space , 1953 .

[26]  S. Posner,et al.  A Closed-Form Approximation for Valuing Basket Options , 1998 .

[27]  Christian Bayer,et al.  Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatility Model , 2015 .

[28]  L. Evans Measure theory and fine properties of functions , 1992 .

[29]  W. Schachermayer,et al.  HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK–MERTON–SCHOLES? , 2007, 0711.1272.

[30]  A. Eydeland,et al.  A Kirk's and a Bachelier formula for three asset spread options , 2011 .

[31]  Carol Alexander,et al.  ANALYTIC APPROXIMATIONS FOR MULTI‐ASSET OPTION PRICING , 2009 .

[32]  P. Duck,et al.  SINGULAR PERTURBATION TECHNIQUES APPLIED TO MULTIASSET OPTION PRICING , 2009 .

[33]  The Heat-Kernel Most-Likely-Path Approximation , 2011 .

[34]  Elton P. Hsu,et al.  ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .

[35]  Srinivasa Varadhan,et al.  Diffusion processes in a small time interval , 1967 .

[36]  Akihiko Takahashi,et al.  Pricing Multi-Asset Cross Currency Options , 2012 .

[37]  Peter K. Friz,et al.  Application of large deviation methods to the pricing of index options in finance , 2003 .

[38]  G. Ben Arous,et al.  Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus , 1988 .

[39]  G. B. Arous,et al.  Second Order Expansion for Implied Volatility in Two Factor Local Stochastic Volatility Models and Applications to the Dynamic \lambda -Sabr Model , 2015 .