Asymptotics Beats Monte Carlo: The Case of Correlated Local Vol Baskets
暂无分享,去创建一个
[1] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[2] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[3] P. Henry-Labordère. Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing , 2008 .
[4] P. Hagan,et al. Equivalent Black volatilities , 1999 .
[5] PRICING AND HEDGING SPREAD OPTIONS IN A LOG-NORMAL MODEL , 2003 .
[6] Vladimir V. Piterbarg. Markovian Projection Method for Volatility Calibration , 2006 .
[7] S. Kusuoka. Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus , 2003 .
[8] V. Linetsky,et al. Constant Elasticity of Variance (CEV) Diffusion Model , 2010 .
[9] S. Posner,et al. Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .
[10] S. Ninomiya,et al. Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.
[11] Jieyun Zhou,et al. Multi-asset spread option pricing and hedging , 2007 .
[12] Antoine Jacquier,et al. Marginal Density Expansions for Diffusions and Stochastic Volatility I: Theoretical Foundations , 2011, 1111.2462.
[13] Stanislav Molchanov,et al. DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .
[14] Dawn Hunter. Pricing Asian and basket options via Taylor expansion , 2002 .
[15] Petter Bjerksund,et al. Closed form spread option valuation , 2006 .
[16] R. Azencott. Densité des diffusions en temps petit: développements asymptotiques , 1984 .
[17] Paolo Pellizzari,et al. Efficient Monte Carlo pricing of European options¶using mean value control variates , 2001 .
[18] Peter K. Friz,et al. Semi-closed form cubature and applications to financial diffusion models , 2010 .
[19] René Carmona,et al. Pricing and Hedging Spread Options , 2003, SIAM Rev..
[20] S. Minakshisundaram,et al. Eigenfunctions on Riemannian Manifolds , 1953 .
[21] Jim Gatheral. The Volatility Surface: A Practitioner's Guide , 2006 .
[22] Terry Lyons,et al. Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[23] S. Minakshisundaram,et al. Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.
[24] P. Hagan,et al. MANAGING SMILE RISK , 2002 .
[25] K. Yosida. On the fundamental solution of the parabolic equation in a Riemannian space , 1953 .
[26] S. Posner,et al. A Closed-Form Approximation for Valuing Basket Options , 1998 .
[27] Christian Bayer,et al. Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatility Model , 2015 .
[28] L. Evans. Measure theory and fine properties of functions , 1992 .
[29] W. Schachermayer,et al. HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK–MERTON–SCHOLES? , 2007, 0711.1272.
[30] A. Eydeland,et al. A Kirk's and a Bachelier formula for three asset spread options , 2011 .
[31] Carol Alexander,et al. ANALYTIC APPROXIMATIONS FOR MULTI‐ASSET OPTION PRICING , 2009 .
[32] P. Duck,et al. SINGULAR PERTURBATION TECHNIQUES APPLIED TO MULTIASSET OPTION PRICING , 2009 .
[33] The Heat-Kernel Most-Likely-Path Approximation , 2011 .
[34] Elton P. Hsu,et al. ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .
[35] Srinivasa Varadhan,et al. Diffusion processes in a small time interval , 1967 .
[36] Akihiko Takahashi,et al. Pricing Multi-Asset Cross Currency Options , 2012 .
[37] Peter K. Friz,et al. Application of large deviation methods to the pricing of index options in finance , 2003 .
[38] G. Ben Arous,et al. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus , 1988 .
[39] G. B. Arous,et al. Second Order Expansion for Implied Volatility in Two Factor Local Stochastic Volatility Models and Applications to the Dynamic \lambda -Sabr Model , 2015 .