Significance of Features via SiZer

SiZer is an exploratory data analysis tool, that works in conjuction with smoothing methods. It addresses the issue that is often central to the use of smoothing in data analysis: which observed features are \really there", and which cannot be distinguished from the background sampling variability? The SiZer approach makes heavy use of scale space ideas.

[1]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[2]  William Alexander,et al.  Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.

[3]  James Stephen Marron,et al.  Some asymptotics for multimodality tests based on kernel density estimates , 1992 .

[4]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[5]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[6]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[7]  G. Sawitzki,et al.  Excess Mass Estimates and Tests for Multimodality , 1991 .

[8]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[9]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[10]  Michael C. Minnotte,et al.  Nonparametric testing of the existence of modes , 1997 .

[11]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[12]  J. Hartigan,et al.  The runt test for multimodality , 1992 .

[13]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[14]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[15]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[16]  Jianqing Fan,et al.  Fast implementations of nonparametric curve estimators , 1993 .

[17]  D. W. Scott,et al.  The Mode Tree: A Tool for Visualization of Nonparametric Density Features , 1993 .