Scalability of 2-D wavelet transform algorithms: analytical and experimental results on coarse-grained parallel computers

We present analytical and experimental results for the scalability of 2-D discrete wavelet transform algorithms on coarse-grained parallel architectures. The principal operation in the 2-D DWT is the filtering operation used to implement the filter banks of the 2-D subband decomposition. We derive analytical results comparing time domain and frequency domain parallel algorithms for realizing the filter banks. Experiments on the Intel Paragon validate the analytical results. We demonstrate that there exist combinations of the machine size, image size, and wavelet size for which the time-domain algorithms outperform the frequency domain algorithms, and vice-versa.

[1]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[2]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[3]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[4]  P. Srinivasan,et al.  Variable-rate speech coding using discrete time wavelet extrema representation , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[5]  G. Beylkin,et al.  On the representation of operators in bases of compactly supported wavelets , 1992 .

[6]  Izidor Gertner,et al.  Parallel computation of the continuous wavelet transform , 1991, Optics & Photonics.

[7]  Olivier Rioul,et al.  Fast algorithms for discrete and continuous wavelet transforms , 1992, IEEE Trans. Inf. Theory.

[8]  Vipin Kumar,et al.  Isoefficiency: measuring the scalability of parallel algorithms and architectures , 1993, IEEE Parallel & Distributed Technology: Systems & Applications.

[9]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Howard Jay Siegel,et al.  FFT Algorithms for SIMD Parallel Processing Systems , 1986, J. Parallel Distributed Comput..

[12]  John L. Gustafson,et al.  Reevaluating Amdahl's law , 1988, CACM.

[13]  Vipin Kumar,et al.  The Scalability of FFT on Parallel Computers , 1993, IEEE Trans. Parallel Distributed Syst..

[14]  Roland Wilson,et al.  A generalized wavelet transform for Fourier analysis: The multiresolution Fourier transform and its application to image and audio signal analysis , 1992, IEEE Trans. Inf. Theory.

[15]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[16]  Guanrong Chen,et al.  Complexity analysis of wavelet signal decomposition and reconstruction , 1994 .

[17]  Jean-Sylvain Liénard,et al.  Wavelets and Granular Analysis of Speech , 1989 .

[18]  Manavendra Misra,et al.  Computation of 2-D Wavelet Transforms on the Connection Machine-2 , 1994, Applications in Parallel and Distributed Computing.

[19]  Viktor K. Prasanna,et al.  Scalable data parallel algorithms and implementations for object recognition , 1993 .

[20]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[21]  Richard W. Hall,et al.  Wavelet transform embeddings in mesh architectures , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[23]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[24]  Jian Lu Parallelizing Mallat Algorithm for 2-D Wavelet Transforms , 1993, Inf. Process. Lett..

[25]  Steven K. Rogers,et al.  Parallel computation of 3D wavelets , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[26]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[27]  L. H. Jamieson,et al.  Evaluating scalability of the 2-D FFT on parallel computers , 1993, 1993 Computer Architectures for Machine Perception.

[28]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[29]  S. G. Mallat Multiresolution Approach to Wavelets in Computer Vision , 1990 .

[30]  Leah H. Jamieson,et al.  Scalable high performance computing: a poly-algorithmic approach to computer vision and image processing libraries on parallel systems , 1996 .

[31]  L. G. Weiss Wavelets and wideband correlation processing , 1994, IEEE Signal Processing Magazine.

[32]  Michael T. Orchard,et al.  Parallel Algorithms for the Two-Dimensional Discrete Wavelet Transform , 1994, 1994 International Conference on Parallel Processing Vol. 3.

[33]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[34]  Shubha Kadambe,et al.  Application of the wavelet transform for pitch detection of speech signals , 1992, IEEE Trans. Inf. Theory.

[35]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[36]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .