Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles
暂无分享,去创建一个
Anne Auger | Nikolaus Hansen | Yann Ollivier | Ludovic Arnold | Y. Ollivier | N. Hansen | A. Auger | L. Arnold | Ludovic Arnold
[1] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[2] Robert Hooke,et al. `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.
[3] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[4] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[5] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[6] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[7] P. Billingsley,et al. Probability and Measure , 1980 .
[8] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[9] Shun-ichi Amari,et al. Differential geometry of statistical inference , 1983 .
[10] J. Burbea. Informative Geometry of Probability Spaces , 1984 .
[11] Geoffrey E. Hinton,et al. A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..
[12] Paul Smolensky,et al. Information processing in dynamical systems: foundations of harmony theory , 1986 .
[13] 甘利 俊一. Differential geometry in statistical inference , 1987 .
[14] L. Darrell Whitley,et al. The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.
[15] H. B. Barlow,et al. Unsupervised Learning , 1989, Neural Computation.
[16] Luís B. Almeida,et al. Acceleration Techniques for the Backpropagation Algorithm , 1990, EURASIP Workshop.
[17] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[18] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[19] L. Schwartz. Calcul différentiel et équations différentielles , 1992 .
[20] Hans-Paul Schwefel,et al. Evolution and Optimum Seeking: The Sixth Generation , 1993 .
[21] Shumeet Baluja,et al. A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .
[22] Ingo Rechenberg,et al. Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.
[23] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[24] Rich Caruana,et al. Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.
[25] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[26] O. SIAMJ.,et al. ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .
[27] Bruno Sareni,et al. Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..
[28] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[29] J. Snyder. Coupling , 1998, Critical Inquiry.
[30] David E. Goldberg,et al. The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..
[31] R. Rubinstein. The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .
[32] Terrence J. Sejnowski,et al. Unsupervised Learning , 2018, Encyclopedia of GIS.
[33] H. Thorisson. Coupling, stationarity, and regeneration , 2000 .
[34] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[35] A. Berny,et al. An adaptive scheme for real function optimization acting as a selection operator , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.
[36] Arnaud Berny. Selection and Reinforcement Learning for Combinatorial Optimization , 2000, PPSN.
[37] Xin Yao,et al. Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.
[38] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[39] Hans-Georg Beyer,et al. The Theory of Evolution Strategies , 2001, Natural Computing Series.
[40] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[41] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[42] Arnaud Berny. Boltzmann Machine for Population-Based Incremental Learning , 2002, ECAI.
[43] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[44] David E. Goldberg,et al. A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..
[45] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[46] Gunnar Rätsch,et al. Advanced Lectures on Machine Learning , 2004, Lecture Notes in Computer Science.
[47] Anne Auger,et al. EEDA : A New Robust Estimation of Distribution Algorithms , 2004 .
[48] Marc Toussaint. Notes on information geometry and evolutionary processes , 2004, ArXiv.
[49] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[50] Dirk P. Kroese,et al. The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .
[51] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[52] Franz Rothlauf,et al. Behaviour of UMDA/sub c/ with truncation selection on monotonous functions , 2005, 2005 IEEE Congress on Evolutionary Computation.
[53] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .
[54] Marcus Gallagher,et al. Population-Based Continuous Optimization, Probabilistic Modelling and Mean Shift , 2005, Evolutionary Computation.
[55] Shie Mannor,et al. A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..
[56] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[57] Yoshua Bengio,et al. Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.
[58] Lih-Yuan Deng,et al. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.
[59] Yee Whye Teh,et al. A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.
[60] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[61] Nikolaus Hansen,et al. An Analysis of Mutative -Self-Adaptation on Linear Fitness Functions , 2006, Evolutionary Computation.
[62] R. Schilling. Measures, Integrals and Martingales , 2006 .
[63] Dirk V. Arnold,et al. Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..
[64] Universitext. An Introduction to Ordinary Differential Equations , 2006 .
[65] Jürgen Branke,et al. Addressing sampling errors and diversity loss in UMDA , 2007, GECCO '07.
[66] Nicolas Le Roux,et al. Topmoumoute Online Natural Gradient Algorithm , 2007, NIPS.
[67] Jihnhee Yu,et al. Measures, Integrals and Martingales , 2007, Technometrics.
[68] Petr Posík. Preventing Premature Convergence in a Simple EDA Via Global Step Size Setting , 2008, PPSN.
[69] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[70] Raymond Ros,et al. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.
[71] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[72] D. O’Regan,et al. An Introduction to Ordinary Differential Equations , 2008 .
[73] Matteo Matteucci,et al. An information geometry perspective on estimation of distribution algorithms: boundary analysis , 2008, GECCO '08.
[74] Tom Schaul,et al. Efficient natural evolution strategies , 2009, GECCO.
[75] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[76] Ruslan Salakhutdinov,et al. Learning in Markov Random Fields using Tempered Transitions , 2009, NIPS.
[77] Nikolaus Hansen,et al. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.
[78] Isao Ono,et al. Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.
[79] Anne Auger,et al. Log-Linear Convergence of the Scale-Invariant (µ/µw, lambda)-ES and Optimal µ for Intermediate Recombination for Large Population Sizes , 2010, PPSN.
[80] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.
[81] Pascal Vincent,et al. Parallel Tempering for Training of Restricted Boltzmann Machines , 2010 .
[82] Ponnuthurai N. Suganthan,et al. Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..
[83] Tom Schaul,et al. High dimensions and heavy tails for natural evolution strategies , 2011, GECCO '11.
[84] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[85] Matteo Matteucci,et al. Towards the geometry of estimation of distribution algorithms based on the exponential family , 2011, FOGA '11.
[86] Evgueni A. Haroutunian,et al. Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.
[87] Anne Auger,et al. Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic $\mathcal C^2$ -composite Functions , 2012, PPSN.
[88] Klaus-Robert Müller,et al. Deep Boltzmann Machines and the Centering Trick , 2012, Neural Networks: Tricks of the Trade.
[89] Youhei Akimoto,et al. Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic C^2-composite Functions , 2012 .
[90] Pascal Vincent,et al. Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.
[91] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[92] P. Olver. Nonlinear Systems , 2013 .
[93] Tom Schaul,et al. A linear time natural evolution strategy for non-separable functions , 2011, GECCO.
[94] Youhei Akimoto,et al. Objective improvement in information-geometric optimization , 2012, FOGA XII '13.
[95] Anne Auger,et al. Principled Design of Continuous Stochastic Search: From Theory to Practice , 2014, Theory and Principled Methods for the Design of Metaheuristics.
[96] Jiaqiao Hu,et al. Gradient-Based Adaptive Stochastic Search for Non-Differentiable Optimization , 2013, IEEE Transactions on Automatic Control.
[97] T. Faniran. Numerical Solution of Stochastic Differential Equations , 2015 .
[98] Jérémy Bensadon,et al. Black-Box Optimization Using Geodesics in Statistical Manifolds , 2013, Entropy.
[99] S. Hewitt,et al. 2006 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.
[100] Shalabh Bhatnagar,et al. Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space , 2018, INFORMS J. Comput..