Nonsmooth Newton Methods for Set-Valued Saddle Point Problems

We present a new class of iterative schemes for large scale set-valued saddle point problems as arising, e.g., from optimization problems in the presence of linear and inequality constraints. Our algorithms can be regarded either as nonsmooth Newton-type methods for the nonlinear Schur complement or as Uzawa-type iterations with active set preconditioners. Numerical experiments with a control constrained optimal control problem and a discretized Cahn-Hilliard equation with obstacle potential illustrate the reliability and efficiency of the new approach.

[1]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[2]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[3]  A. Visintin Models of Phase Transitions , 1996 .

[4]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[5]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[6]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[7]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[8]  John W. Barrett,et al.  An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy , 1995 .

[9]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[10]  Ralf Kornhuber,et al.  Robust Multigrid Methods for Vector-valued Allen–Cahn Equations with Logarithmic Free Energy , 2006 .

[11]  Martin Weiser,et al.  Superlinear convergence of the control reduced interior point method for PDE constrained optimization , 2008, Comput. Optim. Appl..

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[14]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[15]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[16]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[17]  Christian Wieners,et al.  Nonlinear solution methods for infinitesimal perfect plasticity , 2007 .

[18]  L. Badea,et al.  Convergence Rate of a Schwarz Multilevel Method for the Constrained Minimization of Nonquadratic Functionals , 2006, SIAM J. Numer. Anal..

[19]  ProblemsZhiming Chen On Preconditioned Uzawa Methods and SORMethods for Saddle Point , 1998 .

[20]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[21]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[22]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[23]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[24]  A simple proof of the Rademacher theorem , 1988 .

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[26]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[27]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[28]  M. Ulbrich Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in , 2001 .

[29]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[30]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[31]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[32]  Walter Zulehner,et al.  A Class of Smoothers for Saddle Point Problems , 2000, Computing.

[33]  Harald Garcke,et al.  Second order phase field asymptotics for multi-component systems , 2006 .

[34]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[35]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[36]  Jun Zou,et al.  Nonlinear Inexact Uzawa Algorithms for Linear and Nonlinear Saddle-point Problems , 2006, SIAM J. Optim..

[37]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[38]  Ralf Kornhuber,et al.  On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.

[39]  Xue-Cheng Tai,et al.  Convergence Rate Analysis of a Multiplicative Schwarz Method for Variational Inequalities , 2003, SIAM J. Numer. Anal..

[40]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[41]  Carsten Gräser Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .

[42]  J. Mandel A multilevel iterative method for symmetric, positive definite linear complementarity problems , 1984 .

[43]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[44]  Ralf Kornhuber,et al.  On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints , 2007 .

[45]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[46]  Xue-Cheng Tai,et al.  Rate of Convergence for some constraint decomposition methods for nonlinear variational inequalities , 2003, Numerische Mathematik.

[47]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[48]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[49]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..