Deterministic Behaviour of Short Time Series

We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.Sommario: In questo articolo si presenta un nuovo metodo per stabilire il carattere deterministico di serie tempodiscrete molto corte. L'algoritmo dipende da due parametri che possono essere selezionati secondo un semplice criterio. Gli esperimenti mostrano che il metodo è sensibile a livelli di rumore del 2%. Inoltre, tale tecnica consente di stimare il valore del massimo esponente di Lyapunov.

[1]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[2]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[3]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[4]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[5]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[6]  P. Rapp,et al.  Detecting noise in a time series. , 1997, Chaos.

[7]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[8]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[9]  Igor V. Tetko,et al.  Detection of deterministic dynamics in short discrete time series. , 2000 .

[10]  Fedor Mitschke,et al.  Estimation of Lyapunov exponents from time series: the stochastic case , 1993 .

[11]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[12]  Passamante,et al.  Recognizing determinism in a time series. , 1993, Physical review letters.

[13]  A. E. P. Villa,et al.  Correlation Dimension for Two Experimental Time Series , 1998 .

[14]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[15]  A. Crisanti,et al.  Slow and fast dynamics in coupled systems: a time series analysis view , 1997, chao-dyn/9709014.

[16]  Alessandro E. P. Villa,et al.  Correlation dimension for paired discrete time series , 1997 .

[17]  Jianbo Gao,et al.  Local exponential divergence plot and optimal embedding of a chaotic time-series , 1993 .

[18]  Alessandra Celletti,et al.  On the Computation of Lyapunov exponents for discrete Time Series: Applications to Two-Dimensional symplectic and dissipative mappings , 2000, Int. J. Bifurc. Chaos.

[19]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[20]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .