Nanopower SAR ADCs with Reference Voltage Generation

This chapter targets low-power techniques for nanopower SAR ADCs with reference voltage generation. First of all, a 106nW 10b 80 kS/s SAR ADC with duty-cycled reference generation is presented, where a CMOS voltage reference, a duty-cycling block, and a LDO are integrated with the SAR ADC together. Furthermore, a low-power bidirectional comparator is utilized in the SAR ADC to reduce the power consumption. The reference-included SAR ADC achieves a FoM of 2.4fJ/conv.-step. Second, an energy-free DAC reset technique, “swap-to-reset,” is presented to deal with the large DAC reset energy in a SAR ADC, which is usually large compared with DAC conversion energy. In the prototype, the DAC energy consumption is reduced by one-third with “swap-to-reset” applied to the 2 MSBs. Finally, a low-power and area-efficient discrete-time reference driver is introduced. By calculating the energy consumption of each switching step, the DAC in a SAR ADC can be driven by a pre-charged decoupling capacitor compensated by a small auxiliary DAC. In the prototype, the SNDR/SFDR are improved by 2.7 dB/11.6 dB after enabling the 3b DAC compensation and the discrete-time reference driver only adds 10.8% and 10.1% to the power and chip area of the SAR ADC, respectively.

[1]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[2]  Zhangming Zhu,et al.  A 12-Bit 10 MS/s SAR ADC With High Linearity and Energy-Efficient Switching , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Eric A. M. Klumperink,et al.  A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.

[4]  Arthur H. M. van Roermund,et al.  A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[5]  Chih-Cheng Hsieh,et al.  A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[6]  Günter Zimmer,et al.  Threshold-voltage sensitivity of ion-implanted m.o.s. transistors due to process variations , 1974 .

[7]  Kofi A. A. Makinwa,et al.  A precision DTMOST-based temperature sensor , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[8]  David D. Wentzloff,et al.  5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[9]  Hao Gao,et al.  21.2 A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Soon-Jyh Chang,et al.  A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS , 2011, IEEE Asian Solid-State Circuits Conference 2011.

[11]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[12]  Arthur H. M. van Roermund,et al.  A106nW 10 b 80 kS/s SAR ADC With Duty-Cycled Reference Generation in 65 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[13]  Alessandro Venca,et al.  A 0.076 mm2 12 b 26.5 mW 600 MS/s 4-Way Interleaved Subranging SAR- $\Delta \Sigma $ ADC With On-Chip Buffer in 28 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[14]  Arthur H. M. van Roermund,et al.  A 10b 20MS/s SAR ADC with a low-power and area-efficient DAC-compensated reference , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[15]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[16]  Ralf Brederlow,et al.  An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.

[17]  Chung-Ming Huang,et al.  A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[18]  Chih-Cheng Hsieh,et al.  A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[19]  Jon Guerber,et al.  Merged capacitor switching based SAR ADC with highest switching energy-efficiency , 2010 .

[20]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[21]  N. P. van der Meijs,et al.  A 26 $\mu$ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios , 2011, IEEE Journal of Solid-State Circuits.

[22]  Prakash Harikumar,et al.  Design of a reference voltage buffer for a 10-bit 50 MS/s SAR ADC in 65 nm CMOS , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[23]  Hsin-Shu Chen,et al.  11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[24]  Chorng-Kuang Wang,et al.  A 8-bit 500-KS/s low power SAR ADC for bio-medical applications , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[25]  Arthur H. M. van Roermund,et al.  11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[26]  Bang-Sup Song,et al.  Threshold-voltage temperature drift in ion-implanted MOS transistors , 1982, IEEE Transactions on Electron Devices.

[27]  Pieter Harpe,et al.  A 7.1-fJ/Conversion-Step 88-dB SFDR SAR ADC With Energy-Free “Swap To Reset” , 2017, IEEE Journal of Solid-State Circuits.

[28]  F. Borghetti,et al.  A Programmable 10b up-to-6MS/s SAR-ADC Featuring Constant-FoM with On-Chip Reference Voltage Buffers , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[29]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .