A BSSRDF model for efficient rendering of fur with global illumination

Physically-based hair and fur rendering is crucial for visual realism. One of the key effects is global illumination, involving light bouncing between different fibers. This is very time-consuming to simulate with methods like path tracing. Efficient approximate global illumination techniques such as dual scattering are in widespread use, but are limited to human hair only, and cannot handle color bleeding, transparency and hair-object inter-reflection. We present the first global illumination model, based on dipole diffusion for subsurface scattering, to approximate light bouncing between individual fur fibers. We model complex light and fur interactions as subsurface scattering, and use a simple neural network to convert from fur fibers' properties to scattering parameters. Our network is trained on only a single scene with different parameters, but applies to general scenes and produces visually accurate appearance, supporting color bleeding and further inter-reflections.

[1]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[2]  Alan Edelman,et al.  Modeling and rendering of weathered stone , 1999, SIGGRAPH.

[3]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, ACM Trans. Graph..

[4]  Eric Enderton,et al.  Stochastic Transparency , 2011, IEEE Trans. Vis. Comput. Graph..

[5]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, ACM Trans. Graph..

[6]  Martin Hill,et al.  Eurographics Symposium on Rendering 2011 an Energy-conserving Hair Reflectance Model , 2022 .

[7]  Toshiya Hachisuka,et al.  Directional Dipole Model for Subsurface Scattering , 2014, ACM Trans. Graph..

[8]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[9]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[10]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[11]  Christophe Hery,et al.  Importance Sampling of Reflection from Hair Fibers , 2012 .

[12]  Steve Marschner,et al.  Importance sampling for physically-based hair fiber models , 2013, SIGGRAPH ASIA Technical Briefs.

[13]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[14]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[15]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[16]  Henrik Wann Jensen,et al.  Rendering translucent materials using photon diffusion , 2008, SIGGRAPH '08.

[17]  Steve Marschner,et al.  Multi-scale modeling and rendering of granular materials , 2015, ACM Trans. Graph..

[18]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[19]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[20]  Cem Yuksel,et al.  Deep Opacity Maps , 2008, Comput. Graph. Forum.

[21]  Eric Enderton,et al.  Efficient Rendering of Human Skin , 2007 .

[22]  Kun Zhou,et al.  Interactive hair rendering under environment lighting , 2010 .

[23]  Takahiro Harada,et al.  A framework for rendering complex scattering effects on hair , 2012, I3D '12.

[24]  Brent Burley,et al.  A Practical and Controllable Hair and Fur Model for Production Path Tracing , 2015, Comput. Graph. Forum.

[25]  I. Sadeghi Efficient Implementation of the Dual Scattering Model in RenderMan , 2010 .

[27]  Bo Ren,et al.  Interactive hair rendering and appearance editing under environment lighting , 2011, ACM Trans. Graph..

[28]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[29]  Ravi Ramamoorthi,et al.  Physically-accurate fur reflectance , 2015, ACM Trans. Graph..

[30]  Thomas Müller,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016, ACM Trans. Graph..

[31]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[32]  Ulf Assarsson,et al.  Hair self shadowing and transparency depth ordering using occupancy maps , 2009, I3D '09.

[33]  Eric Enderton,et al.  Stochastic Transparency , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[35]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[36]  Ravi Ramamoorthi,et al.  An efficient and practical near and far field fur reflectance model , 2017, ACM Trans. Graph..

[37]  Frédo Durand,et al.  Downsampling scattering parameters for rendering anisotropic media , 2016, ACM Trans. Graph..

[38]  Carsten Dachsbacher,et al.  The SGGX microflake distribution , 2015, ACM Trans. Graph..

[39]  Steve Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, ACM Trans. Graph..

[40]  Ulf Assarsson,et al.  Real-time approximate sorting for self shadowing and transparency in hair rendering , 2008, I3D '08.