Bayesian Static Parameter Estimation for Partially Observed Diffusions via Multilevel Monte Carlo

In this article we consider static Bayesian parameter estimation for partially observed diffusions that are discretely observed. We work under the assumption that one must resort to discretizing the underlying diffusion process, for instance, using the Euler--Maruyama method. Given this assumption, we show how one can use Markov chain Monte Carlo (MCMC) and particularly particle MCMC [C. Andrieu, A. Doucet, and R. Holenstein, J. R. Stat. Soc. Ser. B Stat. Methodol., 72 (2010), 269--342] to implement a new approximation of the multilevel (ML) Monte Carlo (MC) collapsing sum identity. Our approach comprises constructing an approximate coupling of the posterior density of the joint distribution over parameter and hidden variables at two different discretization levels and then correcting by an importance sampling method. The variance of the weights are independent of the length of the observed data set. The utility of such a method is that, for a prescribed level of mean square error, the cost of this MLMC m...

[1]  A. Doucet,et al.  The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[2]  Fredrik Lindsten,et al.  Coupling of Particle Filters , 2016, 1606.01156.

[3]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[4]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[5]  A. Hellander Stochastic Simulation and Monte Carlo Methods , 2009 .

[6]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[7]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[8]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[9]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[10]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[11]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[12]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[13]  M. Li,et al.  Particle Markov chain Monte Carlo methods , 2015 .

[14]  Yan Zhou,et al.  Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2016, ACM Trans. Model. Comput. Simul..

[15]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[16]  D. Nychka Data Assimilation” , 2006 .

[17]  Ajay Jasra,et al.  On coupling particle filter trajectories , 2016, Statistics and Computing.

[18]  Yan Zhou,et al.  Multilevel particle filters: normalizing constant estimation , 2016, Stat. Comput..

[19]  Sean P. Meyn,et al.  A Liapounov bound for solutions of the Poisson equation , 1996 .

[20]  T. J. Dodwell,et al.  A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.

[21]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .