Factorization of sparse polynominals

Sparse polynomials xn±1 are often treated specially by the factorisation programs of computer algebra systems. We look at this, and ask how far this can be generalised. The answer is that more can be done for general binomials than is usually done, and recourse to a general purpose factoriser can be limited to "small" problems, but that general trinomials and denser polynomials seem to be a lost cause. We are concerned largely with the factorisation of univariate polynomials over the integers, being the simplest case.

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  Claus-Peter Schnorr,et al.  Refined Analysis and Improvements on Some Factoring Algorithms , 1981, ICALP.

[3]  Paul S. Wang An improved multivariate polynomial factoring algorithm , 1978 .

[4]  Wilhelm Ljunggren,et al.  On the Irreducibility of Certain Trinomials and Quadrinomials. , 1960 .

[5]  A. C. Norman,et al.  Implementing a polynomial factorization and GCD package , 1981, SYMSAC '81.

[6]  H. Davenport,et al.  EQUATIONS OF THE FORM f(x)=g(y) , 1961 .

[7]  A. Bremner On reductibility of trinomials , 1981, Glasgow Mathematical Journal.

[8]  A. Schinzel Solution d'un problème de K. Zarankiewicz sur les suites de puissances consécutives de nombres irrationnels , 1962 .

[9]  R. Vaughan Bounds for the coefficients of cyclotomic polynomials. , 1975 .

[10]  H. Tverberg On the Irreducibility of the Trinomials $x^n\pm x^m\pm1$. , 1960 .

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  Alfredo Capelli,et al.  Sulla riduttibilità delle equazioni algebriche , 1897 .

[13]  M. Fried The field of definition of function fields and a problem in the reducibility of polynomials in two variables , 1973 .

[14]  B. F. Caviness More on computing roots of integers , 1975, SIGS.

[15]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[16]  Andrzej Schinzel,et al.  Selected topics on polynomials , 1982 .

[17]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.