Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations
暂无分享,去创建一个
[1] V. Solonnikov,et al. Theory of the Navier-Stokes equations , 1998 .
[2] M. J. Wheeler. Heat and Mass Transfer , 1968, Nature.
[3] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[4] Xiaoming Wang,et al. Infinite Prandtl number limit of Rayleigh‐Bénard convection , 2004 .
[5] Dongho Chae,et al. Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .
[6] G. Loeper,et al. A Fully Nonlinear Version of the Incompressible Euler Equations: The Semigeostrophic System , 2006, SIAM J. Math. Anal..
[7] Charles R. Doering,et al. Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.
[8] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .
[9] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[10] Yann Brenier,et al. Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..
[11] Thomas Y. Hou,et al. GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .
[12] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[13] Mario Pulvirenti,et al. Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .
[14] J. Craggs. Applied Mathematical Sciences , 1973 .
[15] Lei Zhu,et al. Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.
[16] P. Bergé,et al. Rayleigh-bénard convection , 1984 .
[17] B. Hoskins,et al. The Mathematical Theory of Frontogenesis , 1982 .
[18] H. K. Moffatt. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals , 1985, Journal of Fluid Mechanics.
[19] Steven Haker,et al. Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..
[20] F. Poupaud,et al. High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .
[21] A. Majda. Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .
[22] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[23] Giovanni Pisante,et al. The Semigeostrophic Equations Discretized in Reference and Dual Variables , 2007 .
[24] V. Arnold,et al. Topological methods in hydrodynamics Applied Mathematical Sciences 125 , 1998 .
[25] H. K. Moffatt. Relaxation Under Topological Constraints , 1992 .
[26] B. Perthame,et al. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .
[27] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[28] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[29] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[30] John Norbury,et al. Generalised Lagrangian solutions for atmospheric and oceanic flows , 1991 .
[31] C. Villani. Topics in Optimal Transportation , 2003 .
[32] H. K. Moffatt. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations , 1986, Journal of Fluid Mechanics.
[33] H. K. Moffatt. Topological aspects of the dynamics of fluids and plasmas , 1992 .
[34] H. K. Moffatt,et al. On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part III. Stability criteria for axisymmetric flows , 1997, Journal of Plasma Physics.
[35] L. Ambrosio. Transport equation and Cauchy problem for BV vector fields , 2004 .
[36] U. Frisch,et al. A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.
[37] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.