Analysis of a Local Discontinuous Galerkin Method for Linear Time-Dependent Fourth-Order Problems

We analyze a local discontinuous Galerkin method for fourth-order time-dependent problems. Optimal error estimates are obtained in one dimension and in multidimensions for Cartesian and triangular meshes. We extend the analysis to higher even-order equations and the linearized Cahn-Hilliard type equations. Numerical experiments are displayed to verify the theoretical results.

[1]  Igor Mozolevski,et al.  hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..

[2]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[3]  Igor Mozolevski,et al.  A Priori Error Analysis for the hp-Version of the Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2003 .

[4]  Richard S. Falk Approximation of the Biharmonic Equation by a Mixed Finite Element Method , 1978 .

[5]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[6]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[7]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[8]  Xiaobing Feng,et al.  Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..

[9]  Igor Mozolevski,et al.  hp-version interior penalty DGFEMs for the biharmonic equation , 2007 .

[10]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[11]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[12]  Bo Dong,et al.  An Analysis of the Minimal Dissipation Local Discontinuous Galerkin Method for Convection–Diffusion Problems , 2007, J. Sci. Comput..

[13]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[14]  M. I. Comodi The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing , 1989 .

[15]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[16]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[18]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[19]  Rolf Stenberg,et al.  Postprocessing schemes for some mixed finite elements , 1991 .

[20]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[21]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[22]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[23]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .