On the oblique water-entry problem of a rigid sphere

The case of oblique water-entry of a rigid sphere into an ideal incompressible fluid is studied analytically in order to determine the hydrodynamical loads acting on the body. We consider the motion imparted to the fluid by an impulsively-started partially-submerged sphere under the large-impact approximation, in which the free surface is assumed flat and equipotential. Asymptotic small-time expressions are derived for both the vertical and horizontal time-dependent added masses and analytical expressions for the hydrodynamic forces are obtained by differentiating these added masses with respect to the instantaneous submergence depth. The resulting expressions are also compared with corresponding numerical solutions and with a known solution for a two-dimensional profile.

[1]  P. Mciver Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth , 1989, Journal of Fluid Mechanics.

[2]  T. Miloh Hydrodynamics of deformable contiguous spherical shapes in an incompressible inviscid fluid , 1977 .

[3]  Touvia Miloh,et al.  Hamilton’s Principle, Lagrange’s Method, and Ship Motion Theory , 1984 .

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  T. Miloh On the initial-stage slamming of a rigid sphere in a vertical water entry , 1991 .

[6]  Louis Robin,et al.  Fonctions sphériques de Legendre et Fonctions sphéroïdales , 1960 .

[7]  Th. von Kármán,et al.  The impact on seaplane floats during landing , 1929 .

[8]  A. A. Korobkin Inclined entry of a blunt profile into an ideal fluid , 1988 .

[9]  T. Miloh Wave slam on a sphere penetrating a free surface , 1981 .

[10]  A. A. Korobkin,et al.  Initial Stage of Water Impact , 1988 .

[11]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[12]  M. Moghisi,et al.  An experimental investigation of the initial force of impact on a sphere striking a liquid surface , 1981, Journal of Fluid Mechanics.

[13]  On the interaction between a strong vortex pair and a free surface , 1990 .

[14]  A. W. Troesch,et al.  HYDRODYNAMIC IMPACT LOADS ON THREE-DIMENSIONAL BODIES. , 1986 .

[15]  L. Landweber,et al.  Generalization of the Kelvin–Kirchhoff equations for the motion of a body through a fluid , 1981 .

[16]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[17]  L. Bittner L. Robin, (Ing. en Chef des Télécommunications, Docteur ès Sciences), Fonctions Sphériques et Fonctions Sphéroidales. Tome I. XXXV + 201 S. m. 7 Abb. Paris 1957. Gauthier-Villars, Collection Technique et Scientifique du C. N. E. T. Preis brosch. 4000 ffrs , 1958 .

[18]  A. Hulme A ring-source/integral-equation method for the calculation of hydrodynamic forces exerted on floating bodies of revolution , 1983, Journal of Fluid Mechanics.

[19]  A. Erdelyi,et al.  Fonctions Spheriques de Legendre et Fonctions Spheroidales. , 1959 .

[20]  H. Wagner Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten , 1932 .

[21]  Anthony J. Roberts,et al.  TRANSIENT FREE-SURFACE FLOWS GENERATED BY A MOVING VERTICAL PLATE , 1987 .

[22]  I. N. Sneddon The use of integral transforms , 1972 .

[23]  A. Chwang Nonlinear hydrodynamic pressure on an accelerating plate , 1983 .

[24]  Leon Trilling,et al.  The Impact of a Body on a Water Surface at an Arbitrary Angle , 1950 .