Smoothed log-concave maximum likelihood estimation with applications
暂无分享,去创建一个
[1] U. Grenander. On the theory of mortality measurement , 1956 .
[2] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] H. M. Möller,et al. Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .
[5] D. Freedman,et al. Some Asymptotic Theory for the Bootstrap , 1981 .
[6] W. Chan,et al. Unimodality, convexity, and applications , 1989 .
[7] Olvi L. Mangasarian,et al. Nuclear feature extraction for breast tumor diagnosis , 1993, Electronic Imaging.
[8] M. An. Log-Concave Probability Distributions: Theory and Statistical Testing , 1996 .
[9] J. Wellner,et al. Estimation of a convex function: characterizations and asymptotic theory. , 2001 .
[10] W. John Braun,et al. Data Sharpening for Nonparametric Inference Subject to Constraints , 2001 .
[11] G. Walther. Detecting the Presence of Mixing with Multiscale Maximum Likelihood , 2002 .
[12] J. Wellner,et al. Estimation of a k-monotone density: limit distribution theory and the Spline connection , 2005, math/0509081.
[13] Jayanta Kumar Pal,et al. Estimating a Polya Frequency Function , 2006 .
[14] K. Rufibach. Computing maximum likelihood estimators of a log-concave density function , 2007 .
[15] Jayanta Kumar Pal,et al. Estimating a Polya frequency function$_2$ , 2007, 0708.1064.
[16] L. Duembgen,et al. Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.
[17] M. Cule,et al. Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.
[18] S. Geer,et al. Multivariate log-concave distributions as a nearly parametric model , 2008, Am. Math. Mon..
[19] Lutz Duembgen,et al. On an Auxiliary Function for Log-Density Estimation , 2008, 0807.4719.
[20] Kellen Petersen August. Real Analysis , 2009 .
[21] Robert B. Gramacy,et al. Maximum likelihood estimation of a multivariate log-concave density , 2010 .
[22] J. Wellner,et al. Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.
[23] G. Walther. Inference and Modeling with Log-concave Distributions , 2009, 1010.0305.
[24] M. Cule,et al. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density , 2009, 0908.4400.
[25] R. Koenker,et al. QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.
[26] L. Dümbgen,et al. Consistency of multivariate log-concave density estimators , 2010 .
[27] Fadoua Balabdaoui,et al. Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds , 2010, Statistica Neerlandica.
[28] L. Dümbgen,et al. logcondens: Computations Related to Univariate Log-Concave Density Estimation , 2011 .
[29] L. Duembgen,et al. APPROXIMATION BY LOG-CONCAVE DISTRIBUTIONS, WITH APPLICATIONS TO REGRESSION , 2010, 1002.3448.
[30] Martin L. Hazelton,et al. Assessing log-concavity of multivariate densities , 2011 .
[31] Raymond J Carroll,et al. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error , 2011, Journal of the American Statistical Association.
[32] Jon A. Wellner,et al. Nonparametric estimation of multivariate scale mixtures of uniform densities , 2010, J. Multivar. Anal..
[33] M. Yuan,et al. Independent component analysis via nonparametric maximum likelihood estimation , 2012, 1206.0457.
[34] R. Samworth. Optimal weighted nearest neighbour classifiers , 2011, 1101.5783.