A Comparison of Electronic States in Periodic and Aperiodic Poly(dA)–Poly(dT) DNA

Using an ab initio tight-binding formalism based on density-functional theory [Lewis et al., Phys. Rev. B 64, 195103-1 (2001)], we present theoretical work on the electronic states in a model periodic DNA double helix of poly(dA)-poly(dT) (10 base-pairs). Comparison of the periodic structure is made to an aperiodic DNA structure with the same sequence, but the structure is distorted as a result of thermal fluctuations from a molecular-dynamics simulation. We find that the periodic structure exhibits periodic and very extended HOMO-LUMO states; however, the equivalent states are quite localized in the aperiodic structure.

[1]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[2]  N. Rösch,et al.  Energetics of hole transfer in DNA , 2000 .

[3]  U. Dornberger,et al.  High Base Pair Opening Rates in Tracts of GC Base Pairs* , 1999, The Journal of Biological Chemistry.

[4]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[5]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[6]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[7]  Cappelletti,et al.  Ab initio molecular-dynamics study of the structural, vibrational, and electronic properties of glassy GeSe2. , 1996, Physical review. B, Condensed matter.

[8]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[9]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[10]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[11]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[12]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[13]  Andrew P. Horsfield,et al.  Efficient AB Initio Tight Binding , 1997 .

[14]  G. Voth,et al.  Further developments in the local-orbital density-functional-theory tight-binding method , 2001 .

[15]  Tomoji Kawai,et al.  Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. , 2001, Physical review letters.

[16]  Kim,et al.  Total-energy global optimizations using nonorthogonal localized orbitals. , 1995, Physical review. B, Condensed matter.

[17]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[18]  Satoshi Itoh,et al.  Order-N tight-binding molecular dynamics on parallel computers , 1995 .

[19]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[20]  M. Sevilla,et al.  Relative abundances of primary ion radicals in .gamma.-irradiated DNA: cytosine vs. thymine anions and guanine vs. adenine cations , 1991 .

[21]  Zhi-Gang Yu,et al.  Variable range hopping and electrical conductivity along the DNA double helix. , 2001, Physical review letters.

[22]  D W Hukins,et al.  Optimised parameters for A-DNA and B-DNA. , 1972, Biochemical and biophysical research communications.

[23]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[24]  A. K. Bakhshi,et al.  On the electronic structure and conduction properties of aperiodic DNA and proteins. I. Strategy and methods of investigations , 1986 .

[25]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[26]  D. Beratan,et al.  DNA: Insulator or wire? , 1997, Chemistry & biology.

[27]  Lewis,et al.  Simplified electronic-structure model for hydrogen-bonded systems: Water. , 1994, Physical review. B, Condensed matter.

[28]  Miguel Fuentes-Cabrera,et al.  The application of approximate density functionals to complex systems , 1998 .

[29]  Y. Varshavsky,et al.  Ionization potentials and electron-donor ability of nucleic acid babes and their analogues , 1976 .

[30]  Otto F. Sankey,et al.  ELECTRONIC-STRUCTURE-BASED MOLECULAR-DYNAMICS METHOD FOR LARGE BIOLOGICAL SYSTEMS : APPLICATION TO THE 10 BASEPAIR POLY(DG).POLY(DC) DNA DOUBLE HELIX , 1997 .

[31]  D. Langley,et al.  Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. , 1998, Journal of biomolecular structure & dynamics.

[32]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[33]  U. Landman,et al.  Charge Migration in DNA: Ion-Gated Transport , 2001, Science.

[34]  Mark A. Ratner,et al.  On the Long-Range Charge Transfer in DNA , 2000 .

[35]  Ortega,et al.  Electronic structure approach for complex silicas. , 1995, Physical review. B, Condensed matter.

[36]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[37]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[38]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[39]  Bernd Giese,et al.  Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling , 2001, Nature.

[40]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[41]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[42]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[43]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[44]  R. J. Boyd,et al.  Electron affinities and ionization potentials of nucleotide bases , 2000 .

[45]  J. Ladik,et al.  The effect of water environment on the hopping conductivity of an aperiodic nucleotide base stack , 2001 .

[46]  M Hjort,et al.  Band resonant tunneling in DNA molecules. , 2001, Physical review letters.

[47]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[48]  David Alan Drabold,et al.  Energetics of Large Fullerenes: Balls, Tubes, and Capsules , 1992, Science.

[49]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[50]  M. Finnis,et al.  The Harris functional applied to surface and vacancy formation energies in aluminium , 1990 .

[51]  Pablo Ordejón,et al.  Order-N tight-binding methods for electronic-structure and molecular dynamics , 1998 .

[52]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[53]  R. Feynman Forces in Molecules , 1939 .