Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures.

Mixed matrix membranes (MMMs) composed of a glassy polymer (polysulfone) and the flexible metal organic framework NH(2)-MIL-53(Al) exhibit excellent separation properties. In contrast to most reported membranes, CO(2)/CH(4) separation selectivity increases with pressure, related to the flexibility of the filler.

[1]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[2]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[3]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[4]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[5]  C. Téllez,et al.  Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .

[6]  William J. Koros,et al.  Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation , 2011 .

[7]  D. Farrusseng,et al.  Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2 , 2011 .

[8]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[9]  Yong-ming Wei,et al.  Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption , 2010 .

[10]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[11]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[12]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[13]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[14]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[15]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[16]  L. F. Castillo,et al.  CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques , 2010 .

[17]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[18]  S. Basu,et al.  Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks , 2009 .

[19]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[20]  C. Téllez,et al.  Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[21]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[22]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[23]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[24]  J. Caro,et al.  Butene isomers separation on titania supported MFI membranes at conditions relevant for practice , 2009 .

[25]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[26]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[27]  J. Caro,et al.  Zeolite membranes – Recent developments and progress , 2008 .

[28]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[29]  J. Dalmon,et al.  Nanocomposite MFI-alumina membranes via pore-plugging synthesis , 2008 .

[30]  F. Kapteijn,et al.  Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .

[31]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[32]  J. Caro,et al.  Zeolite Membranes: From the Laboratory Scale to Technical Applications , 2005 .

[33]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[34]  J. Jegal,et al.  Coordination Compound Molecular Sieve Membranes , 2005 .

[35]  F. Kapteijn,et al.  Separation modeling of linear and branched C6 alkane permeation through silicalite-1 membranes , 2003 .

[36]  R. Mahajan,et al.  Challenges in forming successful mixed matrix membranes with rigid polymeric materials , 2002 .

[37]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[38]  J. Santamaría,et al.  Separations Using Zeolite Membranes , 1999 .

[39]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[40]  I. Vankelecom,et al.  INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .