Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures.
暂无分享,去创建一个
Freek Kapteijn | Jorge Gascon | Alberto Martinez-Joaristi | F. Kapteijn | C. Téllez | J. Gascón | Beatriz Zornoza | J. Coronas | P. Serra-Crespo | Beatriz Zornoza | Pablo Serra-Crespo | Carlos Tellez | Joaquin Coronas | A. Martinez-Joaristi
[1] F. Kapteijn,et al. Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .
[2] F. Kapteijn,et al. Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .
[3] François-Xavier Coudert,et al. Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[4] F. Kapteijn,et al. Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.
[5] C. Téllez,et al. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .
[6] William J. Koros,et al. Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation , 2011 .
[7] D. Farrusseng,et al. Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2 , 2011 .
[8] Christopher W. Jones,et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.
[9] Yong-ming Wei,et al. Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption , 2010 .
[10] S. Basu,et al. Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .
[11] C. Serre,et al. Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.
[12] J. Ferraris,et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .
[13] F. Kapteijn,et al. A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.
[14] Jason K. Ward,et al. Metal organic framework mixed matrix membranes for gas separations , 2010 .
[15] Freek Kapteijn,et al. Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.
[16] L. F. Castillo,et al. CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques , 2010 .
[17] Armin Feldhoff,et al. Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.
[18] S. Basu,et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks , 2009 .
[19] Jürgen Caro,et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.
[20] C. Téllez,et al. Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. , 2009, Langmuir : the ACS journal of surfaces and colloids.
[21] Seth M. Cohen,et al. Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.
[22] C. Serre,et al. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.
[23] Freek Kapteijn,et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.
[24] J. Caro,et al. Butene isomers separation on titania supported MFI membranes at conditions relevant for practice , 2009 .
[25] J. Ferraris,et al. Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .
[26] F. Kapteijn,et al. Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .
[27] J. Caro,et al. Zeolite membranes – Recent developments and progress , 2008 .
[28] J. Ferraris,et al. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .
[29] J. Dalmon,et al. Nanocomposite MFI-alumina membranes via pore-plugging synthesis , 2008 .
[30] F. Kapteijn,et al. Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .
[31] A. Fletcher,et al. Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .
[32] J. Caro,et al. Zeolite Membranes: From the Laboratory Scale to Technical Applications , 2005 .
[33] W. Koros,et al. Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .
[34] J. Jegal,et al. Coordination Compound Molecular Sieve Membranes , 2005 .
[35] F. Kapteijn,et al. Separation modeling of linear and branched C6 alkane permeation through silicalite-1 membranes , 2003 .
[36] R. Mahajan,et al. Challenges in forming successful mixed matrix membranes with rigid polymeric materials , 2002 .
[37] Gérard Férey,et al. Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .
[38] J. Santamaría,et al. Separations Using Zeolite Membranes , 1999 .
[39] William J. Koros,et al. Tailoring mixed matrix composite membranes for gas separations , 1997 .
[40] I. Vankelecom,et al. INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .