Faraday and Resonant Waves in Dipolar Cigar-Shaped Bose-Einstein Condensates

Faraday and resonant density waves emerge in Bose-Einstein condensates as a result of harmonic driving of the system. They represent nonlinear excitations and are generated due to the interaction-induced coupling of collective oscillation modes and the existence of parametric resonances. Using a mean-field variational and a full numerical approach, we studied density waves in dipolar condensates at zero temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole interaction (DDI) plays an important role. We derived variational equations of motion for the dynamics of a driven dipolar system and identify the most unstable modes that correspond to the Faraday and resonant waves. Based on this, we derived the analytical expressions for spatial periods of both types of density waves as functions of the contact and the DDI strength. We compared the obtained variational results with the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii equation in 3D, and found a very good agreement.

[1]  Alexandru I. Nicolin,et al.  Variational treatment of Faraday waves in inhomogeneous Bose–Einstein condensates , 2012 .

[2]  Kuan-Yu Li,et al.  Tuning the Dipole-Dipole Interaction in a Quantum Gas with a Rotating Magnetic Field. , 2018, Physical review letters.

[3]  Paulsamy Muruganandam,et al.  C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2012, Comput. Phys. Commun..

[4]  Luis Santos,et al.  Faraday patterns in coupled one-dimensional dipolar condensates , 2012, 1207.1999.

[5]  Axel Pelster,et al.  Breakdown of the Kohn theorem near a Feshbach resonance in a magnetic trap , 2013 .

[6]  Antun Balaz,et al.  Faraday waves in binary nonmiscible Bose-Einstein condensates , 2012, 1202.2059.

[7]  Antun Balaz,et al.  Faraday waves in collisionally inhomogeneous Bose-Einstein condensates , 2014 .

[8]  Vladimir Loncar,et al.  OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation , 2017, Comput. Phys. Commun..

[9]  R. Tang,et al.  Faraday instability and Faraday patterns in a superfluid Fermi gas , 2011 .

[10]  Kestutis Staliunas,et al.  Faraday patterns in bose-Einstein condensates. , 2002, Physical review letters.

[11]  SUDHARSAN BALASUBRAMANIAN,et al.  FARADAY WAVES IN CIGAR-SHAPED BOSE-EINSTEIN CONDENSATES WITH RADIALLY INHOMOGENEOUS SCATTERING LENGTHS , 2013 .

[12]  Elena D'iaz,et al.  Super–Bloch oscillations with modulated interaction , 2013 .

[13]  Peter Schmelcher,et al.  Controlled excitation and resonant acceleration of ultracold few-boson systems by driven interactions in a harmonic trap , 2011, 1112.4678.

[14]  F. Kh. Abdullaev,et al.  Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures , 2013 .

[15]  V. S. Bagnato,et al.  Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation , 2017, Physical Review X.

[16]  Alexandru I. Nicolin,et al.  DENSITY WAVES IN DIPOLAR BOSE-EINSTEIN CONDENSATES , 2013 .

[17]  Alexandru I. Nicolin,et al.  FARADAY WAVES IN ONE-DIMENSIONAL BOSE-EINSTEIN CONDENSATES , 2011 .

[18]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[19]  Paulsamy Muruganandam,et al.  Fortran OpenMP programs for rotating Bose-Einstein condensates , 2019 .

[20]  Paulsamy Muruganandam,et al.  Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2016, Comput. Phys. Commun..

[21]  Antun Balaz,et al.  Faraday and resonant waves in binary collisionally-inhomogeneous Bose–Einstein condensates , 2016, 1608.01580.

[22]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[23]  Elena D'iaz,et al.  Stability and decay of Bloch oscillations in the presence of time-dependent nonlinearity , 2011 .

[24]  Roger R. Sakhel,et al.  Nonequilibrium Dynamics of a Bose-Einstein Condensate Excited by a Red Laser Inside a Power-Law Trap with Hard Walls , 2013, Journal of Low Temperature Physics.

[25]  Liang Jin,et al.  Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields , 2012, Quantum Inf. Process..

[26]  P. Capuzzi,et al.  Faraday waves in elongated superfluid fermionic clouds , 2008 .

[27]  V. Bychkov,et al.  Quantum swapping of immiscible Bose-Einstein condensates as an alternative to the Rayleigh-Taylor instability , 2011, 1112.2566.

[28]  P. Engels,et al.  Observation of faraday waves in a Bose-Einstein condensate. , 2007, Physical review letters.

[29]  M. Baranov,et al.  Theoretical progress in many-body physics with ultracold dipolar gases , 2008 .

[30]  Axel Görlitz,et al.  Tuning the dipolar interaction in quantum gases. , 2002, Physical review letters.

[31]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[32]  Alexandru I. Nicolin,et al.  Faraday waves in high-density cigar-shaped Bose–Einstein condensates , 2010 .

[33]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[34]  Patrizia Vignolo,et al.  Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice , 2010, 1010.1778.

[35]  Yuichi Okuda,et al.  Faraday instability of superfluid surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R. Grimm,et al.  Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms. , 2015, Physical review letters.

[37]  Alexandru I. Nicolin,et al.  FARADAY WAVES IN BOSE-EINSTEIN CONDENSATES SUBJECT TO ANISOTROPIC TRANSVERSE CONFINEMENT , 2011 .

[38]  Vladimir Loncar,et al.  C and Fortran OpenMP programs for rotating Bose-Einstein condensates , 2019, Comput. Phys. Commun..

[39]  Kestutis Staliunas,et al.  Removal of excitations of Bose-Einstein condensates by space- and time-modulated potentials , 2011 .

[40]  Bernd Fröhlich,et al.  Strong dipolar effects in a quantum ferrofluid , 2007, Nature.

[41]  A. Nicolin,et al.  Resonant wave formation in Bose-Einstein condensates. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  A. I. Karanikas,et al.  Geometric-phase-propagator approach to time-dependent quantum systems , 2012 .

[43]  T. Koch,et al.  Expansion dynamics of a dipolar Bose-Einstein condensate (10 pages) , 2006 .

[44]  Vladimir Loncar,et al.  OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross-Pitaevskii equation , 2016, Comput. Phys. Commun..

[45]  V. S. Bagnato,et al.  Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length , 2010, 1004.2887.

[46]  L. Santos,et al.  Faraday patterns in two-dimensional dipolar Bose-Einstein condensates , 2010 .

[47]  R. Grimm,et al.  Bose-Einstein condensation of erbium. , 2012, Physical review letters.

[48]  P. G. Kevrekidis,et al.  Faraday waves in Bose-Einstein condensates , 2007, 0710.5921.

[49]  D. S. Jin,et al.  Controlling the quantum stereodynamics of ultracold bimolecular reactions , 2010, 1010.3731.

[50]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[51]  Sadhan K. Adhikari,et al.  OpenMP Fortran and C programs for solving the time-dependent Gross-Pitaevskii equation in an anisotropic trap , 2016, Comput. Phys. Commun..

[52]  Luis E. Young-S.,et al.  Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap , 2015, Comput. Phys. Commun..

[53]  Vladimir Loncar,et al.  CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap , 2016, Comput. Phys. Commun..