Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices

This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.

[1]  Brandon Whitcher,et al.  Statistical group comparison of diffusion tensors via multivariate hypothesis testing , 2007, Magnetic resonance in medicine.

[2]  M. Drton Likelihood ratio tests and singularities , 2007, math/0703360.

[3]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[4]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[5]  Pool‐Adjacent‐Violators Algorithm , 2006 .

[6]  Nicholas Ayache,et al.  Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.

[7]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[8]  Peter J. Basser,et al.  A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI , 2003, IEEE Transactions on Medical Imaging.

[9]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[10]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) first year observations: TE polarization , 2003, astro-ph/0302213.

[11]  Y. Chikuse Statistics on special manifolds , 2003 .

[12]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[13]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[14]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[15]  S. Lang Fundamentals of differential geometry , 1998 .

[16]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[17]  W. White A CMB polarization primer , 1997, astro-ph/9706147.

[18]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[19]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[20]  K. Fang,et al.  Generalized Multivariate Analysis , 1990 .

[21]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[22]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[23]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[24]  A. James,et al.  Special Functions of Matrix and Single Argument in Statistics , 1975 .

[25]  H. Scheffé Practical Solutions of the Behrens-Fisher Problem , 1970 .

[26]  C. L. Mallows Latent vectors of random symmetric matrices , 1961 .

[27]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[28]  H. Chernoff On the Distribution of the Likelihood Ratio , 1954 .

[29]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .